These pour obtenir le grade de docteur de
 L'Ecole Nationale Superieure de Chimie de Montpellier

En Chimie et Physico-Chimie des Matériaux
École doctorale Sciences Chimiques Balard (ED 459)

Unité de recherche Institut Européen des Membranes

Molecular doping of copper-based catalysts for the electrocatalytic conversion of CO_{2} to multi-carbon products

Présentée par Huali Wu
Le 10 Novembre 2022

Sous la direction du Pr. Pilippe MIELE
et la co-direction du Dr. Damien VOIRY

Devant le jury composé de
Raffaella BUONSANTI, Professeur, Swiss Federal Institute of Technology Lausanne Rapporteur
Cicero GIANCARLO, Associate Professeur, Politecnico di Torino Marc ROBERT, Professeur, Paris Cité University, CNRS Sara CAVALIERE, Professeur, Université de Montpellier
(President) Examinateur
Examinateur
Philippe MIELE, Professeur, Université de Montpellier Directeur
Damien VOIRY, Chargé de Recherche CNRS, Université de Montpellier
Co-directeur

UNIVERSItÉ DE MONTPELLIER

Acknowledgements

First, I would like to thank my committee members, Professor Raffaella Buonsanti and Professor Cicero Giancarlo, for their valuable input on my work. In addition, thanks to Professor Marc Robert and Professor Sara Cavaliere for serving as the chairs of my oral defense committee. I appreciated all of your questions and different perspectives on my work based on your respective fields of expertise.

Then, I must give a big thanks to my principal adviser, Dr. Damien Voiry, for all his guidance, motivation, support and patience on my research work over the years. Damien is well known for the positivity and enthusiasm that he brings to research because these attributes are truly contagious. His encouragement and unending support have been invaluable for staying motivated in the face of failure that is inevitable during pursuing my PhD . By enabling me to engage with the broader CO_{2}-derived energy at IEM and ENSCM, I have developed a much better understanding of the diverse challenges and opportunities we face in transitioning to a more sustainable global energy economy. And, in doing so, I have been able to discover my passion for working to accelerate this transition in order to avoid the worst impacts of greenhouse gas. Last but not least, Damien has an incredible ability to connect and engage with basically anyone he speaks with. Not only does this make him a great communicator and mentor, but it has also opened up countless opportunities for collaborations, without which, it is an extreme understatement to say that my PhD would not have been the same. I cannot understate the pivotal role he has played in my personal and professional growth. I have learned so much from Damien during my time in his lab, and I really cannot thank him enough. Next, I need to give another big thanks to my second adviser Professor Philippe Miele, the leader of DM3 group in IEM, gave me suggestions and help on my research work during these years.

I also appreciate Dr. Luc Lajaunie, Dr. Eddy Petit, Dr. Valérie Flaud, Dr. Chrystelle Salameh and Dr. Nicolas Onofrio who had provided the big assistances for my samples' tests, data analysis and physical simulations over the years. I'm also grateful for Dr. Kun Qi, Dr. Ji Li, Dr. Lingqi Huang, Dr. Yang Zhang, and the PhD students Wensen Wang and Jiefeng Liu who helped me a lot in my research work and lives. We shared many happiness and sorrow together, especially since we haven't been back to China for at least three years because of the Covid. I've spent all the important Chinese holidays with all of you! I would also like to acknowledge Dr. Quentin Hanniet, Dr. Ghenwa Chawich, and the PhD students Joelle El Hayek, Hippolyte Dory and Bonito Aristide Karamoko who gave me a hand when I had some difficulties in French. They gave me many useful advices and helped me learn and realize a lot of French culture and cuisine. I would never forget them! Furthermore, I also want to thank the European Commission for funding my PhD, which is the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 804320)

Last but certainly not least, I would like to thank my family for their unconditional love and support. I was the only child of my parents and it was very difficult for me to leave them and come to France to pursue my PhD. I thank my parents for their endless love, support and understanding. Finally, I want to thank my boyfriend Wei, who is always encouraging, caring and loving to me, even though I sometimes get angry with him when my experiments don't go well or papers are rejected. Thank you for always loving me and supporting me.

Résumé

L'augmentation rapide de la concentration de CO_{2} due à la consommation de ressources fossiles constitue une grande menace pour l'environnement écologique de la planète et le développement durable de la société humaine. Pour réduire la concentration de CO_{2} tout en assurant son recyclage, la réduction électrochimique est considérée comme une approche prometteuse et a attiré l'attention du monde entier au cours des dernières décennies. Le cuivre, qui est l'un des rares métaux de transition, peut catalyser l'électrolyse du CO_{2} en produits multi-carbone tels que l'éthylène, l'éthanol, l'acétate, le propanol, qui ont des valeurs marchandes plus élevées et sont plus concentrés en énergie. Par conséquent, des efforts intenses ont été consacrés à l'amélioration de la sélectivité de la réaction vers la production de molécules C_{2+}, y compris l'alliage, le dopage de surface, la modification des ligands et l'ingénierie des interfaces.

Des recherches antérieures ont montré que les sites de cuivre partiellement oxydés $\left(\mathrm{Cu}^{\delta+}, 0<\delta<1\right)$ à la surface des catalyseurs de cuivre peuvent faciliter la conversion du CO_{2} en multicarbures en diminuant la barrière énergétique associée à la dimérisation du CO et à la formation de l'intermédiaire * OCCOH via un transfert de charge efficace entre les sites d'étape de surface et les intermédiaires réactionnels. Néanmoins, l'instabilité des espèces Cu^{8+}, en particulier aux potentiels cathodiques élevés pendant l'électrosynthèse de multicarbones, rend l'étude du rôle de $\mathrm{Cu}^{\delta+}$ fastidieuse, et peut éventuellement se conduire à une perte rapide de la performance. C'est pourquoi le contrôle précis de l'état d'oxydation du Cu et de la présence d'espèces Cu^{+}à la surface des électrodes a récemment été au centre des préoccupations dans le domaine de la $\mathrm{CO}_{2} \mathrm{RR}$ notamment via l'oxydation contrôlée, la polarisation pulsée ou fonctionnalisation.

Dans cette thèse, nous avons cherché à affiner le comportement des sites actifs à la surface des catalyseurs de cuivre via des stratégies d'ingénierie moléculaire. Nous avons tout d'abord modifié la surface du catalyseur bimétallique argent-cuivre avec des hétérocycles aromatiques tels que des dérivés de thiadiazole et de triazole afin d'améliorer la conversion du CO_{2} en molécules d'hydrocarbures. Nous avons observé que la nature électrophile des groupes fonctionnels oriente la réaction vers la production d'espèces C_{2+} (éthanol et éthylène) et augmente la vitesse de réaction à la surface du catalyseur. En conséquence, nous avons obtenu une efficacité faradique (FE) élevée pour la formation de $\mathrm{C}_{2+} \mathrm{de} \approx 80 \%$ et une efficacité énergétique en cellule complète de $20,3 \%$ avec une densité de courant spécifique de $261,4 \mathrm{~mA} \mathrm{~cm}^{-2}$ pour le C_{2+} en utilisant des électrodes Ag-Cu fonctionnalisées. Nous anticipons que notre stratégie peut encore être étendue pour améliorer la sélectivité de la réaction vers la production de molécules multi-carbones spécifiques.

Par conséquent, sur la base de ces expériences de preuve de concept, nous avons ensuite exploré une bibliothèque de sels d'aryl diazonium avec différents degrés d'électrophilicité pour fonctionnaliser le catalyseur de cuivre. En combinant calculs de théorie fonctionnelle de la densité (DFT) avec les spectroscopies Raman et d'absorption des rayons X (XAS) en mode operando, nous avons mis en lumière le rôle de létat d'oxydation de surface de $\mathrm{Cu}^{\delta+}$ avec $0<\delta<1$ sur la sélectivité et le taux de formation de $\mathrm{C}_{2} \mathrm{H}_{4}$. En conséquence, nous avons obtenu une FE et une densité de courant spécifique pour le $\mathrm{C}_{2} \mathrm{H}_{4}$ aussi grandes que $83 \pm 2 \%$ et $212 \mathrm{~mA} \mathrm{~cm}^{-2}$ à partir d'une
électrode à base de cuivre partiellement oxydé: $\mathrm{Cu}^{0.26+}$. Cela correspond à une efficacité énergétique de $26,9 \%$ et à une consommation électrique (CE) de $61,4 \mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$. En couplant avec une cellule membrane-électrode à base d'Ag pour générer du CO à partir de CO_{2}, nous avons obtenu un processus d'électrolyse en cascade avec une efficacité énergétique de $\sim 40 \%$ et un $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ de $86 \pm 2 \%$, ce qui correspond à une CE record de seulement $25,6 \mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$. Globalement, les résultats de cette thèse ouvrent la voie à des développements pratiques pour la réaction de conversion du CO_{2} en $\mathrm{C}_{2} \mathrm{H}_{4}$ en utilisant l'ingénierie de la valence des sites Cu .

Abstract

The rapid increase of CO_{2} concentration due to fossil energy consumption poses a great threat to the ecological environment of the planet and the sustainable development of human society. To reduce the concentration of CO_{2} while achieving carbon recycling, the electrochemical reduction of CO_{2} is considered a promising approach and has attracted worldwide attention in recent decades. So far, copper, which is one of the few transition metals, can effectively catalyze the electrolysis of CO_{2} into multi-carbon products such as ethylene, ethanol, acetate, propanol, which have higher market values and are more energy concentrated. Therefore, intensive efforts have been devoted to improving the selectivity of the reaction towards the production of $\mathrm{C}_{2}+$ molecules, including alloying, surface doping, ligand modification and interface engineering.

It has been reported that partially oxidized copper $\left(\mathrm{Cu}^{\delta+}, 0<\delta<1\right)$ sites on the surface of copper catalysts can facilitate the conversion of CO_{2} to multi-carbons by decreasing the energy barrier associated with the CO dimerization and the formation of *OCCOH intermediate via efficient charge transfer between the surface step sites and the reaction intermediates. Nevertheless, the instability of $\mathrm{Cu}^{\delta+}$ species, especially the high cathodic potentials during the electro-synthesis of multi-carbons, made the study of the role of $\mathrm{Cu}^{\delta+}$ tedious, and it may eventually lead to a rapid loss of the performance. Therefore, the control of the oxidation state of Cu and the presence of Cu^{+}species on the surface of the electrodes has recently been a central focus in $\mathrm{CO}_{2} \mathrm{RR}$ notably via controlled oxidation, pulse polarization, or molecular doping.

In this thesis, I sought to fine-tune the behavior of the active sites of copper-based catalysts surfaces through molecular engineering. I firstly modified the surface of the bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO_{2} into hydrocarbon molecules. We identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C_{2+} species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst. As a result, we achieve a high Faradaic efficiency (FE) for the C_{2+} formation of $\approx 80 \%$ and full-cell energy efficiency of 20.3% with a specific current density of $261.4 \mathrm{~mA} \mathrm{~cm}^{-2}$ for C_{2+} using functionalized Ag-Cu electrodes. We anticipate that our strategy can further be extended to improve the selectivity of the reaction towards the production of specific multi-carbons molecules.

Therefore, based on this proof of concept experiments, we then explored a library of aryl diazonium salts with different electron-withdrawing ability to functionalize copper. By combining density functional theory (DFT) calculations with operando Raman and X-ray absorption spectroscopy (XAS), we identified the role of the surface oxidation state of $\mathrm{Cu}^{\delta+}$ with $0<\delta<1$ on the selectivity and the formation rate of $\mathrm{C}_{2} \mathrm{H}_{4}$. As a result, we obtained a FE and a specific current density for $\mathrm{C}_{2} \mathrm{H}_{4}$ as large as $83 \pm 2 \%$ and $212 \mathrm{~mA} \mathrm{~cm}^{-2}$, respectively on partially oxidized $\mathrm{Cu}^{0.26+}$. This corresponds to an energy efficiency of 26.9% and an electrical power consumption (EPC) of 61.4 $\mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$. When coupled with an Ag-based membrane electrode assembly (MEA) cell to generate CO from CO_{2} in a cascade flow process, an energy efficiency of $\sim 40 \%$ with a $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ of $86 \pm 2 \%$ was achieved,

corresponding to a record low EPC of $25.6 \mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$. Overall, this thesis provides a route towards practical developments for the CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion reaction using valence engineering of the Cu sites.

Publications

1. H. Wu, J. Li, Q. Kun, Y. Zhang, E. Petit, W. Wang, V. Flaud, N. Onofrio, B. Rebiere, L. Huang, C. Salameh, L. Lajaunie, P. Miele and D. Voiry, Improved electrochemical conversion of CO_{2} to multicarbon products by using molecular doping. Nature Communication 12, 7210 (2021).
2. H. Wu, L. Huang, J. Timoshenko, K. Qi, W. Wang, J. Liu, Y. Zhang, S. Yang, E. Petit, V. Flaud, J. Li, C. Salameh, P. Miele, L. Lajaunie, B. R. Cuenya, D. Rao, D. Voiry, Selective and energy-efficient. electrosynthesis of ethylene via. valence engineering of the Cu sites. Submitted.
3. Y. Zhang, K. Qi, J. Li, B. A Karamoko, L. Lajaunie, F. Godiard, E. Oliviero, X. Cui, Y. Wang, Y. Zhang, H. Wu, W. Wang \& D. Voiry, $2.6 \% \mathrm{~cm}^{-2}$ Single-Pass CO_{2}-to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer. ACS Catalysis, 2021, 11, 20, 1270112711.
4. K. Qi, Y. Zhang, J. Li, C. Charmette, M. Ramonda, X. Cui, Y. Wang, Y. Zhang, H. Wu, W. Wang, X. Zhang \& D. Voiry, Enhancing the CO_{2}-to-CO Conversion from 2D Silver Nanoprisms via Superstructure Assembly. ACS Nano, 2021, 15, 4.
5. J. Li, Y. Zhang, C. Liu, L. Zheng, E. Petit, K. Qi, Y. Zhang, H. Wu, W. Wang, A. Tiberj, X. Wang, M. Chhowalla, L. Lajaunie, R. Yu, and D. Voiry. 3.4\% Solar-to-Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS_{2} Nanosheets. Advanced Functional Materials 32.18 (2022): 2108316.

Table of Contents

ACKNOWLEDGEMENTS 3
RÉSUMÉ 5
ABSTRACT 7
PUBLICATIONS 9
CHAPTER 1. GENERAL INTRODUCTION 13
1.1 Motivation for Electrochemical CO_{2} Reduction 13
1.2 ELECTROCHEMICAL CO_{2} REDUCTION 14
1.2.1 Mechanisms for Electrochemical CO_{2} reduction 14
1.2.2 Evaluation indexes of Electrochemical CO2 reduction 17
1.3 Current state of Electrochemical CO2 reduction reaction. 18
1.3.1 Controlling the size of catalyst. 19
1.3.2 Regulating the crystal facets of catalyst 20
1.3.3 Interface effects 22
1.3.4 Alloying 24
1.3.5 Tailoring the valence of catalyst 27
1.3.6 Spillover effects 28
1.4 Dissertation Overview 29
1.4.1 The Research backgrounds 29
1.4.2 The Research contents 30
1.5 References 31
CHAPTER 2. ELECTROCATALYST MICROENVIRONMENT ENGINEERING FOR ENHANCED PRODUCT SELECTIVITY IN CARBON DIOXIDE AND NITROGEN REDUCTION REACTIONS 37
2.1 Abstract 37
2.2 Introduction 37
2.3 MECHANISTIC AND THERMODYNAMIC ORIGIN OF MULTIPLE PRODUCT GENERATION IN CO2RR AND NRR 38
2.4 InCREASING SELECTIVITY VIA CATALYST DESIGN 40
2.4.1 Catalyst nano-structuring for improved mass transport 40
2.4.2 Surface functionalization 44
2.4.3 Crystal size and facet control. 45
2.4.4 Single site engineering 48
2.5 The electrolyte: an active component to drive reactivity and enhance selectivity 49
2.5.1 Adjusting the local pH at the electrode/electrolyte interface 49
2.5.2 Optimizing the components of the electrolyte: alkali metal cation effects 51
2.5.3 The search for novel electrolytes: ionic liquids and non-aqueous electrolytes 53
2.5.4 Solid-state electrolyte designs. 55
2.6 Three-Phase interface engineering 57
2.7 Conclusions and Perspectives 60
2.8 References 62
CHAPTER 3. IMPROVED ELECTROCHEMICAL CONVERSION OF CO_{2} TO MULTI-CARBON PRODUCTS BY USING MOLECULAR DOPING 73
3.1 Abstract 73
3.2 Introduction 73
3.3 EXPERIMENTAL METHODS 74
3.3.1 Materials 74
3.3.2 Electrochemical measurements. 77
3.3.3 Quantification of the CO2RR products 78
3.4 RESULTS AND DISCUSSION 79
3.4.1 Catalyst design and characterization 79
3.4.2 Investigation of the CO2 electro-reduction 88
3.4.3 XAS and in-situ Raman analysis 94
3.4.4 CO2RR using a membrane-electrode-assembly (MEA). 102
3.5 CONCLUSIONS 107
3.6 REFERENCES 108
CHAPTER 4. SELECTIVE AND ENERGY-EFFICIENT ELECTROSYNTHESIS OF ETHYLENE VIA VALENCE ENGINEERING OF THE CU SITES 113
4.1 AbStract. 113
4.2 Introduction 113
4.3 EXPERIMENTAL METHODS 115
4.3.1 Materials 115
4.4 RESULTS AND DISCUSSION. 121
4.4.1 Density functional theory calculations 121
4.4.2 Catalyst synthesis and characterization 123
4.4.3 Ex-situ and operando investigations. 126
4.4.4 Direct vs. cascade flow processes for the formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ 129
4.5 Conclusions 133
4.6 References 133
4.7 Notes 138
4.7.1 Note S1. Techno-economic assessment (TEA) of ethylene performance in CO2RR systems based on membrane-electrode- assembly (MEA) electrolyzers. 138
4.7.2 Note S2. Details of techno-economic assessment (TEA). 139
4.8 SUPPLEMENTARY INFORMATION 147
CHAPTER 5. SUMMARY AND PERSPECTIVES 191
5.1 Summary 191
5.2 Perspectives 192

Chapter 1. General introduction

1.1 Motivation for Electrochemical CO_{2} reduction

Energy crisis and climate change on a global scale have made scientists increasingly enthusiastic about the research in the field of sustainable development ${ }^{1}$. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$, made of carbon and oxygen elements, plays a critical role in the carbon cycle in earth's ecological system. The release of CO_{2} by organisms and human industrial activities, and the fixation by green plants and ocean make the carbon cycle reaches a balance in nature ${ }^{2}$. However, the concentration of CO_{2} in the atmosphere is continuously rising year by year, and global warming is increasing due to the rapid development of human industrialization in recent years. It is therefore very important and urgent to reduce the impact of greenhouse gases on the natural ecosystems. One of the most effective and economic methods to mitigate the side effects of CO_{2} brought is to fix it and make it convert to the useful and sustainable fuels.

The current solutions to fix CO_{2} can be classified into two main categories: (1) capture CO_{2} and store it in the earth's crust, (2) chemically convert CO_{2} molecules into carbon-based energy materials that can be reused ${ }^{3-6}$. Obviously, the latter is a faster and more sustainable solution, which may also be economically viable. Generally speaking, CO_{2} can be converted by chemical methods such as photocatalytic or (electro-) catalytic reduction of $\mathrm{CO}_{2}{ }^{7-11}$. However, in the process of carbon dioxide catalysis, a large amount of energy is consumed, and the low conversion rate of CO_{2} cannot obtain obvious economic profits in the short term. Therefore, decreasing the energy consumed while improving the (1) catalytic efficiency and (2) selectivity and (3) conversion rate of CO_{2} are critical to close carbon cycle at practical levels.

In recent years, the electrochemical conversion of CO_{2} to carbon-based products has received much attention due to the many advantages of the electrocatalytic CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$, such as mild reaction conditions normally operating at room temperature and atmospheric pressure, recyclable electrolytes, as well as reactions that are easily scalable to industrial-level development. (Fig.1) ${ }^{12-16}$ Furthermore, electrocatalytic CO_{2} reduction uses electric energy as driving force, which can be obtained from wind energy, solar energy and water energy that do not generate CO_{2} again, thus lowering the carbon footprint.

Fig. 1 Surface average atmospheric CO_{2} concentration (ppm) and statistics on the numbers of publications related to CO_{2} reduction in the last few decades. (Data obtained from Web of Science, collected May 10, 2020) (left). Diagrammatic illustration of the carbon cycle (right) ${ }^{13,14,16}$.

1.2 Electrochemical CO_{2} reduction

1.2.1 Mechanisms for Electrochemical CO_{2} reduction

The electrochemical reduction reaction of CO_{2} is complex and involves multiple proton-coupled electrons transfer reactions depending on the products ${ }^{7}{ }^{17}$. It mainly includes successive reaction steps as shown below: first, CO_{2} is adsorbed on the surface of electrodes; second, electrons transfer and protons coupling with the dissociation of $\mathrm{C}=\mathrm{O}$ bond and the formation of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{O}$ bonds; third, the desorption of products from the electrocatalysts surface. Due to the linear chemical bonds, CO_{2} is a rather chemically inert molecule and difficult to be activated. This explains why it is challenging to transform CO_{2} into desirable products due to the high energy of $750 \mathrm{~kJ} / \mathrm{mol}$ for the $\mathrm{C}=\mathrm{O}$ bond. However, when carbon dioxide molecules adsorbed on the surface of the catalyst, its molecular configuration can be changed and the activation energy of its molecules can be reduced during electrocatalytic processes.

There are several configurations for the adsorbed CO_{2} on catalysts (Fig. 2), which change depending on the applied potentials. The thermodynamic electrochemical half-reactions of CO_{2} reduction and their associated standard electrode potentials are summarized and listed in Table 1. Although the thermodynamic potentials for different reactions are high, the experimental electrode potentials are usually much higher than theoretical values because of the relatively high overpotentials for activating CO_{2} into $* \mathrm{CO}_{2}{ }^{-}$intermediate.

Fig 2. The different configurations of CO_{2} adsorbed on catalysts.

Table1. Selected standard potentials of CO_{2} in aqueous solutions (V vs. RHE) at 1atm and $25^{\circ} \mathrm{C}$, calculated according to the standard Gibbs energies of reactants in reactions ${ }^{7}$.

Thermodynamic reactions	Electrode potentials (V vs. RHE) under standard conditions
$\mathrm{CO}_{2}+e^{-} \rightarrow \mathrm{CO}_{2}^{-}$	-1.9 V
$\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{HCOOH}(\mathrm{aq})$	-0.12 V
$\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{CO}(\mathrm{g})$	-0.1 V
$\mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 e^{-} \rightarrow \mathrm{CH} \mathrm{OH}(\mathrm{aq})$	0.03 V
$\mathrm{CO}_{2}+4 \mathrm{H}^{+}+4 e^{-} \rightarrow \mathrm{C}(\mathrm{s})$	0.21 V
$\mathrm{CO}_{2}+8 \mathrm{H}^{+}+8 e^{-} \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$	0.17 V
$2 \mathrm{CO}_{2}+8 \mathrm{H}^{+}+8 e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	0.11 V
$2 \mathrm{CO}_{2}+10 \mathrm{H}^{+}+10 e^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{aq})$	0.06 V
$2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 e^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	0.08 V
$2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 e^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$	0.09 V
$2 \mathrm{CO}_{2}+14 \mathrm{H}^{+}+14 e^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	0.14 V
$3 \mathrm{CO}_{2}+18 \mathrm{H}^{+}+18 e^{-} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\mathrm{aq})$	0.1 V

The catalytic reactions follow different pathways and generate different products depending on the different catalysts. In general, CO_{2} is usually reduced to formic acid on $\mathrm{Pb}, \mathrm{Hg}, \mathrm{Ti}, \mathrm{In}, \mathrm{Sn}, \mathrm{Cd}$ and Bi , while it is converted to CO on $\mathrm{Au}, \mathrm{Ag}, \mathrm{Zn}, \mathrm{Pd}$ and Ga^{7}. Copper (Cu), as one of the few transition metals, can efficiently form multicarbon products such as ethylene, ethanol, acetate, propanol, which make it particular interesting to obtain higher market value chemicals from CO_{2}.

The origin of the different selectivity on these four groups of transition metals has been explained to be the result of their respective binding energy of the key $\mathrm{CO}_{2} \mathrm{RR}$ and HER intermediates, including * $\mathrm{H}, * \mathrm{OCHO}$ (bound to the surface through O), ${ }^{*} \mathrm{COOH}$ (bound to the surface through C), and ${ }^{*} \mathrm{CO}$ (* refers to the binding site). The unique ability of Cu to reduce CO_{2} to multi-carbon products is attributed to the fact that it is the only metal that has a negative adsorption energy for ${ }^{*} \mathrm{CO}$ but a positive adsorption energy for ${ }^{*} \mathrm{H}$, as illustrated in Fig. 3^{18}.

Fig 3. CO_{2} reduction metal classification ${ }^{18}$.

Since only copper has shown potentials for producing hydrocarbon products, such as ethanol, ethylene, n propanol and so on, many researches have explored the possible reaction mechanisms. Fig. 4^{12} shows the different pathways of multi-carbon products and the corresponding predicted activation energy of the intermediates. During the conversion of CO_{2} to multi-carbon products, CO has been identified to be the most critical intermediate, which is involved in the formation of many hydrocarbons via $\mathrm{C}-\mathrm{C}$ coupling reactions. We note that CO can eventually be protonated to form * CHO or *COH prior the C-C coupling step. For example, in the process of producing ethylene, there are two proposed pathways:
(1) $2{ }^{*} \mathrm{CO} \rightarrow{ }^{*} \mathrm{COCO},{ }^{*} \mathrm{COCO}+{ }^{*} \mathrm{H} \rightarrow{ }^{*} \mathrm{COCOH}$
(2) ${ }^{*} \mathrm{CO}+{ }^{*} \mathrm{H} \rightarrow{ }^{*} \mathrm{CHO},{ }^{*} \mathrm{CHO}+{ }^{*} \mathrm{CO} \rightarrow{ }^{*} \mathrm{COCHO}$

Ethylene would be produced by further deoxidation and hydrogenation of both ${ }^{*} \mathrm{COCOH}$ and ${ }^{*} \mathrm{COCHO}$ intermediates.

Fig. 4. The possible reaction roadmap of electrochemical CO_{2} reduction reaction ${ }^{12}$.

1.2.2 Evaluation indexes of Electrochemical CO_{2} reduction

To evaluate and compare the performance of electrochemical CO_{2} reduction, several indexes are usually considered and presented as follows:
(1) Faradaic efficiency ($\mathbf{F E}, \%$), represents the percentage of electrons really involved in the formation of a target product in the total electrons consumed by the reaction, which reflects the selectivity of a product on a catalyst.

The Faradaic efficiency (FE) of each gas product was calculated as follows:

$$
\begin{equation*}
F E_{\text {gas }}=g_{i} \times v \times \frac{z_{i}}{R T} F P_{0} \times \frac{1}{I_{\text {total }}} \times 100 \% \tag{1}
\end{equation*}
$$

The Faradaic efficiency (FE) of each liquid product was calculated as follows:

$$
\begin{equation*}
F E_{\text {liquid }}=l_{i} \times \frac{z_{i}}{Q_{\text {total }}} F \times 100 \% \tag{2}
\end{equation*}
$$

where g_{i} represents the volume fraction of gas product $i ; v$ represents the gas flow rate at the outlet in scem; z_{i} represents the number of electrons required to produce one molecule of product $i ; I_{\text {total }}$ represents the total current; l_{i} represents the number of moles of liquid product i; and $Q_{\text {total }}$ represents the charge passed while the liquid products are being collected. $P_{0}=1.01 \times 105 \mathrm{~Pa}, T=273.15 \mathrm{~K}, F=96,485 \mathrm{C} \mathrm{mol}^{-1}$ and $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(2) Current density ($\mathbf{j}, \mathbf{A} \mathbf{~ c m}^{-2}$), as the total current measured at a particular potential divided by the geometric area of the working electrode, is used to measure the reaction rate of the electrocatalytic reaction. It is of great significance to evaluate whether a catalyst or reaction system meets the requirements for large-scale production. The partial current density for a specific product represents the current density involved in the formation of a specific product and is also an important index for evaluating the catalyst performance. The specific current density can be used to extrapolate the Tafel slope and gained additional information about the reaction mechanism. The current density depends on the number of active sites on the catalyst, the mass transfer rate of the reaction system, and the impedance of the system (the rate of electrons transfers to the reactants on the electrode surface).
(3) Overpotential (η), is the additional driving force required to drive a reaction at a particular rate, and it can be calculated as follows,

$$
\begin{equation*}
\eta=E_{c a t}-E^{0} \tag{3}
\end{equation*}
$$

where E^{0} represents the standard electrode potential of a specific product, and $E_{\text {cat }}$ represents the potential applied to the working electrode. When evaluating the performance of the catalyst, the smaller the onset potential, the better the performance of the catalyst at a constant Faradaic efficiency. The overpotentials at both the anode and the cathode are important contributions to the cell voltage and strongly affect the energy efficiency (EE) of the conversion process, as shown below:

$$
\begin{equation*}
E E_{i}=\frac{\left(1.23-E_{i}\right) \times F E_{i}}{\left(1.23-E_{\text {app }}\right)} \tag{4}
\end{equation*}
$$

Where E_{i} represents the thermodynamic potential (vs. RHE) for $\mathrm{CO}_{2} \mathrm{RR}$ to species i; $F E_{i}$ represents the Faradaic efficiency of species i; $E_{a p p}$ refers to the applied potential (vs. RHE)
(4) Tafel slope, is obtained from the linear fit of the logarithm of overpotential and current density. It is also used to analyze electrochemical reaction mechanism and kinetics, and it can be calculated as follows,

$$
\begin{equation*}
\eta=a+b * \log \left(j_{\text {product }}\right) \tag{5}
\end{equation*}
$$

Where b represents Tafel slope; a represents a constant which has some relationships with the interface structure between electrolyte and electrode; η is the overpotential; $j_{\text {product }}$ represents the specific current density for specific product. The rate determine step of $\mathrm{CO}_{2} \mathrm{RR}$ can be deduced by calculating the Tafel slope.
(5) Electrochemically active surface area (ECSA), As the loading amount of catalyst on electrode and the specific surface area have big influences on the geometrical current density, the electrochemically active surface area (ECSA) is introduced to gauge the intrinsic activity of the catalyst. In electrochemical reactions, there are several methods to measure the ECSA, including the electrochemical double-layer capacitance ($C_{d l}$); underpotential deposition method (UPD) of hydrogen, copper or lead; hydrogen, oxygen or CO stripping and Redox peak calibration. Both electrochemical double-layer capacitance method ($C_{d l}$) and underpotential deposition method (UPD) are two common methods to examine the ECSA in CO_{2} RR.
(6) Stability, is an important parameter to evaluate the catalyst's practical performance. Generally, we can evaluate its stability by observing the change of the current with the increased time by cyclic voltammetry and galvanostatic or potentiostatic methods.

1.3 Current state of Electrochemical CO 2 reduction reaction

Recently, more and more attention has been given to $\mathrm{CO}_{2} \mathrm{RR}$, as it offers several advantages such as controllable temperature and pressure, moderate reaction potentials, and the ability to scale up. In addition, $\mathrm{CO}_{2} \mathrm{RR}$ is powered by electrical energy, which can be obtained from a renewable source such as wind, solar and hydro power, reducing the CO_{2} footprint of the process. However, the biggest challenge for $\mathrm{CO}_{2} \mathrm{RR}$ is the modest Faradaic efficiency and instability for specific products together with a low energy efficiency.

The electrocatalytic reduction of carbon dioxide has been studied for decades, and scientists are committed to develop and improve the activity of electrocatalysis to overcome various challenges in the electrocatalytic process. So far, catalysts with excellent electrocatalytic performance for the CO_{2} reduction mainly include transition metals and their oxides, nitrides, sulfides, phosphating derivatives. Nanostructured metal catalysts usually show high specific surface area and abundant active sites on the specific facets, twin boundary or low coordination sites. Therefore, various nanostructured compounds based on metals and their alloys, sulfides, carbides have been synthesized with the controlled morphology, composition and exposed crystal planes, such as nanoparticles, nanosheets, nanorods, and so on. $\mathrm{Ag}, \mathrm{Au}, \mathrm{Zn}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Bi}$ and Cu based nanomaterials have been widely investigated for the electrochemical CO_{2} reduction. Taking Copper (Cu), as one of the few transition metals that
can efficiently produce valuable multi-carbon products, the selectivity toward one single product on Cu remains poor (below 50%) because of the inappropriate adsorption energy of intermediates.

According to the Sabatier principle, an ideal catalyst should bind with the intermediates appropriately, not too strongly, nor too weakly ${ }^{19}$. In general, the binding energy of chemical species on a catalyst highly depends on the structure and composition as well as the environment of the surface ${ }^{20}$. By tuning the binding energy of the intermediates, the surface's catalytic performance and the products can be consequently modified ${ }^{21}$. Ideal catalyst should optimize the binding energy of CO_{2} and the multiple intermediates involved in the reaction. Therefore, intensive efforts are devoted to control the binding energies between catalysts and reaction intermediates by tailoring the Cu -based nanomaterials to improve $\mathrm{CO}_{2} \mathrm{RR}$ selectivity and activity. This imposes the development of advanced physical and chemical strategies for tuning the electronic properties of Cu .

1.3.1 Controlling the size of catalyst

Nanostructured copper-based catalysts show excellent performance in CO_{2} reduction. Engineering the size of the nanocrystals can effectively change the coordination number of the surface atoms and the adsorption behavior of active species, which are considered as an effective way to regulate catalytic selectivity ${ }^{22}$. In order to study the relationship between catalyst size and electrochemical performance, many researchers have synthesized a series of nanostructured copper-based catalysts, including copper single atom ${ }^{23,24}$, nanoparticles ${ }^{25-27}$, nanowires ${ }^{27}$, nanosheets ${ }^{28}$. By embedding copper single atom into hollow carbon nanofibers, a Faradaic efficiency of 44% for methanol was achieved ${ }^{23}$. The authors attribute the remarkable performance to the synergistic effect between copper single atom and hollow carbon nanofibers ${ }^{24}$. The interaction between copper and hollow carbon nanofibers strengthens the adsorption energy of *CO intermediates, while the further protonation leads to the formation of * CHOH , a key reaction intermediate for methanol formation. It is generally believed that CO_{2} electroreduction to multi-carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Therefore, copper single atoms can only selectively catalyze $\mathrm{CO}, \mathrm{CH}_{4}$ and methanol. However, Fontecave et al^{23} found that single copper atoms with a CuN_{4} coordination environment in a nitrogen-doped conductive carbon matrix achieves aqueous CO_{2} electroreduction to ethanol with a high Faradaic efficiency of 55% under optimized conditions (electrolyte: $0.1 \mathrm{M} \mathrm{CsHCO}_{3}$, potential: - 1.2 V vs. RHE and gas-phase recycling set up), as well as CO electroreduction to C_{2}-products (ethanol and ethylene) with a Faradaic efficiency of 80%. Operando X-ray adsorption (XAS) analysis shows that the copper single atom is converted into copper metal particles during the catalytic reaction, which can then return to the original single atom dispersion state when the voltage is stopped. Strasser group reported the effects of catalyst size on activity and selectivity of CO_{2} RR (Figs. 5-4a and b). They revealed that the smaller the catalysts' size, typically below 5 nm , the selectivity of H_{2} and CO are increased, while the generation of multi-carbon products is inhibited. This is due to the strong adsorption capacity of * CO and * H at low coordination conditions that decreases the chance of *CO-*CO coupling. However, Alivisatos et al ${ }^{29}$. reported that a monodispersed Cu
nanoparticle with the size of 7 nm exhibited $76 \% \mathrm{CH}_{4}$ selectivity at -1.35 V . At the same time, the nanoparticles gradually merged to 25 nm during the reduction process. This however did not affect the Faradaic efficiency of $\mathrm{CH}_{4}{ }^{29}$. In contrast, the size of $20 \mathrm{~nm} \mathrm{Cu} \mathrm{Cu}_{2} \mathrm{O}$ cube nanocrystals will be gradually reduced into 2-4 nm while Faradaic efficiency of $\mathrm{C}_{2} \mathrm{H}_{4}$ was increased from 27% to 57.3% during the reduction process ${ }^{30}$. Cuenya group ${ }^{31}$ found that the diffusion of CO_{2} and the re-adsorption of intermediates influence the selectivity of final products. To do so, they studied the ratio of particle spacing to particle size IP/d based on experimental and first principal investigations (Figs. 5-4c, d and e).

1.3.2 Regulating the crystal facets of catalyst

Regulating nanocrystalline orientation is another effective way to regulate the specific product's selectivity. Studies have shown that different Cu crystal planes show different activity and selectivity during the $\mathrm{CO}_{2} \mathrm{RR}$ process (Fig. 6), and the ratio of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{4}$ is closely related to the orientation of Cu crystal facets ${ }^{37,38}$. The Cu (111) crystal facet is favorable for CH_{4} formation, while the $\mathrm{Cu}(100)$ crystal facet contributes to $\mathrm{C}_{2} \mathrm{H}_{4}$ formation ${ }^{32}$. According to the crystal structure of copper, each copper atom on the surface of $\mathrm{Cu}(100)$ is surrounded by four nearest atoms with the distance of $2.57 \AA$ and four sub-neighboring atoms ($3.64 \AA$), while the copper atom on the surface of $\mathrm{Cu}(111)$ is surrounded by six nearest atoms ($2.57 \AA$). This means that $\mathrm{Cu}(100)$ surface has a lower coordination number than Cu (111) surface, which determines its selective adsorption intermediates and transition states ${ }^{33}$. Density Functional Theory (DFT) calculations have pointed out that * CHO intermediate is more easily adsorbed on $\mathrm{Cu}(100)$ crystal plane at lower overpotential so that the $\mathrm{C}-\mathrm{C}$ coupling from two ${ }^{*} \mathrm{CHO}$ intermediates to produce $\mathrm{C}_{2} \mathrm{H}_{4}$ is more favorable than on $\mathrm{Cu}(111)$ surface ${ }^{34}$. This phenomenon was also observed by Hori et al. in his seminal experiments ${ }^{35,36}$. More recently, Sargent's group synthesized a 70% Cu (100) facet exposed catalyst with a Faradaic efficiency of $90 \% \mathrm{C}_{2+}$ products by electrodepositing Cu under CO_{2} assisted condition. This enhanced selectivity was attributed to the adsorption of specific intermediates on $\mathrm{Cu}(100)$ facet (Figs. 6a to 6 d$)^{37}$. Furthermore, the introduction of Step or Terrace defects on flat catalyst's surfaces would further affect the catalytic activity and reaction pathways. For example, Jaramillo et al ${ }^{38}$ found that an improved selectivity toward oxygen-containing multi-carbon product can be achieved at low potential by introducing Cu (751) crystal facet through physical vapor deposition (PVD) epitaxy growth, $\mathrm{Cu}(\mathrm{S})-[\mathrm{n}(110) \mathrm{x}$ (100)] ($\mathrm{n}=2 \sim 7$). In this work, the authors proposed that at low potential, C-C coupling is a chemical reaction process, rather than an electrochemical process of proton coupled electron transfer. Compared with $\mathrm{Cu}(111)$ and (100), which have 6 and 4 adjacent copper atoms on the surface respectively, $\mathrm{Cu}(751)$ has only 2 nearest surface neighbors. Therefore, * CO is unlikely to be coupled with adjacent H^{*}, which means it is difficult to achieve the hydrogenation of C-C, and therefore more oxygen-containing products will be produced (Figs. 6e and 6f) ${ }^{38}$. Alternatively, the control of the morphology can direct the reaction pathway. Porous three-dimensional copper dendrites also show good ethylene selectivity, while they do not have obvious crystal facets orientation. This
suggests that the surface roughness and the high-density defects are the most important factors for producing multi-carbon products ${ }^{39,40}$.

Fig 6. Crystal facets effects. a, Surface energy changes with the surface coverage of the $\mathrm{CO}_{2} \mathrm{RR}$ (assuming the same coverages for all of the four intermediates) and HER intermediates. b, Adsorption energies of four intermediates on three facets of copper. c, two-dimensional GIWAXS patterns of the $\mathrm{Cu}-\mathrm{CO}_{2}$ catalysts with respect to the deposition time. d , a comparison of the Faradaic efficiencies of $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2+}$ and CO on $\mathrm{Cu}^{-\mathrm{CO}_{2}-60}$ and Cu -HER- 20 catalysts in $7 \mathrm{M} \mathrm{KOH}^{37}$. e, Xray pole figures for $\mathrm{Cu}(200)$ on $\mathrm{Ti} / \mathrm{Al}_{2} \mathrm{O}_{3}(0001)$ (left top), $\mathrm{Cu}(200)$ on Si (100) (right top), Cu (111) on Si (111) (left bottom) and the Cu (751) on Si (111) (right bottom). f, Oxygenate/hydrocarbon ratio for $>2 \mathrm{e}^{-}$reduction products as a function of potential for $\mathrm{Cu}(111),(751)$, and (100) ${ }^{38}$.

Fig 5. Nanoparticles size effect. (a) Particle size dependence of (a) the composition of gaseous reaction products (balance is CO_{2}) during catalytic CO_{2} electroreduction over Cu NPs , (b) the Faradaic selectivity of reaction products during the CO_{2} electroreduction on $\mathrm{Cu} \mathrm{NPs}^{25}$, (c) Ball models of spherical Cu NPs with 2.2 and 6.9 nm diameters. Surface atoms are colorcoded according to their first neighbor coordination number (CN), $\mathrm{CN}<8$ (gray), $\mathrm{CN}=8$ (blue), $\mathrm{CN}=9$ (red), $\mathrm{CN}>9$ (green). (d) Population (relative ratio) of surface atoms with a specific CN as a function of particle diameter. (e) Simulation results of the CO_{2} concentration distribution based on diffusion equations. The red arrows show the reactant flux toward the NPs. The color scale shows the concentration of CO_{2} at a given distance from the NPs, as a percentage of its value in the bulk of the electrolyte. A diffusion layer thickness of 100 nm was assumed. (f) CO_{2} flux obtained for NPs with different size and IP distances based on diffusion equations. The data are normalized by the corresponding flux obtained from a flat Cu foil. (g) Experimental current density obtained at -1.1 V (vs RHE) during the electrochemical reduction of CO_{2} over 7.4 nm Cu NPs with distinct average IP spacing ${ }^{31}$.

1.3.3 Interface effects

As both the electronic structure and the surface state of the heterogeneous catalyst would affect the adsorption free energy and the adsorption modes of CO_{2} and the reaction intermediates, controlling the interfaces becomes important for the $\mathrm{CO}_{2} \mathrm{RR}^{41}$ The interface between two different components, including active/active and
active/inactive interfaces, promotes synergies between them. Metal oxides are usually unstable under $\mathrm{CO}_{2} \mathrm{RR}$, and the synergistic effect of the metal/metal oxide interface generated by partial reduction tends to produce highly active and high selective catalytic sites. The different valences of metal is also known to change the adsorption free energy of intermediates and promote water dissociation and C-C coupling Figs. 7 a and $7 \mathrm{~b}{ }^{42}$. Furthermore, the metal/carbon-based material interface can make full use of the conductive skeleton and defects of graphene, nanotubes and nano-diamond and promote the formation and the stability of CO_{2}^{--}.

(1) The interface of metal/metal oxide

The metal/metal oxide interface form a highly active region and important connection points during the activation process of catalyst, which can improve the selectivity and the activity of the $\mathrm{CO}_{2} \mathrm{RR}$. Buonsariti et al ${ }^{43}$. synthesized a $\mathrm{Cu} / \mathrm{CeO}_{2-x}$ heterodimer catalyst and demonstrated an excellent synergistic effect in $\mathrm{CO}_{2} \mathrm{RR}$. The $\mathrm{Cu} / \mathrm{CeO}_{2 \text {-x }}$ heterodimer showed good selectivity towards CO_{2} reduction (over than $80 \% \mathrm{FE}_{\text {total }}$) with a FE for CH_{4} as high as 54% at -1.2 V (vs. RHE) by using sol-gel method to combine two different sites (Cu and $\mathrm{CeO}_{2-\mathrm{x}}$) through the interface connection. DFT shows that the combination of oxygen vacancies site with intermediates binding to both Cu and Ce atoms at the same time was the lowest free energy pathway, which results in the breaking of the linear relationship between the *CHO and the *CO intermediates. The continuous formation of *CO at the interface and the high density of Cu sites effectively inhibits HER^{43}. Sargent group reported a complementary approach in which they utilized hydroxide and oxide doping of a catalyst surface to tune the adsorbed hydrogen on Cu^{44}. Density functional theory studies indicate that doping accelerates water dissociation and changes the hydrogen adsorption energy on Cu . The authors synthesized and investigated a series of metal-hydroxide-interface-doped- Cu catalysts, and found that the most efficient, $\mathrm{Ce}(\mathrm{OH}) \mathrm{x}$-doped- Cu , exhibits an ethanol Faradaic efficiency of 43% and a partial current density of $128 \mathrm{~mA} \mathrm{~cm}^{-2}$. Mechanistic studies, which combined investigation of hydrogen evolution performance with the results of operando Raman spectroscopy, showed that adsorbed hydrogen hydrogenates surface $* \mathrm{HCCOH}$, a key intermediate whose fate determines branching to ethanol versus ethylene.

(2) The interface of metals/carbon-based materials

Compared with the noble catalysts, carbon-based materials have the advantages of low cost, high electrical activity, large specific surface area and good chemical stability, and can be used as the second component of the ideal catalytic interface. Nanodiamond (Nd) is one of the few catalysts that produce multi-carbon products in CO_{2} reduction so far ${ }^{45}$. In addition, the N -doped nanodiamond ($\mathrm{N}-\mathrm{Nd}$) has a dominant N -sp3C component, which plays an important role in improving the electrocatalytic performance ${ }^{46}$. Cui et al. synthesized heterogeneous electrocatalysts by rational tuning of an assembly of nitrogen-doped nanodiamonds and copper nanoparticles ${ }^{47}$. High resolution transmission electron Microscopy (HRTEM) shows that a direct interface between $\mathrm{N}-\mathrm{Nd}$ and Cu can be obtained in agreement with previous observations of the interface between Cu and N -doped carbon
nanomaterials. The catalyst exhibits a Faradaic efficiency of $\sim 63 \%$ towards C_{2} oxygenates at an applied potential of only -0.5 V vs. RHE. Moreover, this catalyst showed excellent stability for 120 h and only 19% activity decay. Density functional theory calculations show that CO binding is strengthened at the copper/nanodiamond interface. This suppresses the desorption of CO and promotes the formation of C_{2} by lowering the barrier for the CO dimerization. Importantly, the inherent compositional tunability and electronic tunability of the catalyst assembly provide an unparalleled degree of control over the catalytic interface, and thus the energetics and kinetics of the reaction ${ }^{47}$.

Fig 7. a, Interface effects. (a) Free energy profiles of CO dimerization in the metallic Cu matrix (blue), fully oxidized matrix (red), and Cu metal embedded in oxidized matrix (green) models and for CO hydrogenation to form surface CHO species. b, Free energy of water dissociation on different metal oxide-modified Cu surfaces ${ }^{42}$. c, Water activation on oxide/ Cu interface. d, Surface configurations of $\mathrm{CeO}_{2} / \mathrm{Cu}$ with and without adsorbed hydrogen. e, selectivity of various oxide $/ \mathrm{Cu}$ interface electrode ${ }^{44}$.

1.3.4 Alloying

Alloy nanoparticles can offer superior catalytic selectivity than single component nanoparticles in $\mathrm{CO}_{2} \mathrm{RR}$. To improve the selectivity and stability of copper catalyst, and decrease the overpotential for producing multi-carbon products, many researches focused on copper-based double metal catalysts ${ }^{48}$. The addition of a second metal to copper is considered to be an effective method for regulating the binding strength of the intermediates on catalytic surfaces, thereby modifying the selectivity and the reactivity ${ }^{48}$. A series of bimetallic catalysts, such as $\mathrm{Cu}-\mathrm{Au}$, $\mathrm{Cu}-\mathrm{Pd}, \mathrm{Cu}-\mathrm{In}, \mathrm{Cu}-\mathrm{Zn}, \mathrm{Cu}-\mathrm{Ni}$ and $\mathrm{Cu}-\mathrm{Sn}$, have been shown to improve the surface activity of CO_{2} reduction ${ }^{49-53}$. Studies on Cu - Ag alloy or Cu -modified Ag electrocatalysts show that Cu can improve the surface activity of CO_{2} reduction to hydrocarbons. Especially, the adjustment of d-band structure and geometric effect of $\mathrm{Cu}-\mathrm{Au}$ and $\mathrm{Cu}-$ Ag alloy catalysts allow the identification of several factors that affect the performance of the catalysts such as: surface adsorption energy of the bonded intermediates and the orientation of intermediates.

Alloying can be advantageously be used to tune the electronic structure of the catalyst surface through introducing another metallic element. According to the theoretical model of d-band, both the width of the d band center and the distance of the Fermi level would change the surface adsorption energy of the bonded intermediates (Fig. 8a). Alloying or bimetallic phase formation can induce surface recombination, change the binding energy of the target intermediate (and thus the reaction pathway), and improve reaction kinetics and selectivity. When a metal strongly bonds to C_{2+} intermediates (e.g., ${ }^{*} \mathrm{CO},{ }^{*} \mathrm{COH},{ }^{*} \mathrm{COOH}$), the introduction of a second metal may weaken the metal-CO interaction while synergistically improve the production of multi-carbon products (Figs 8 b and 8 c). Indeed, * ${ }^{*} \mathrm{CO}$ is an important intermediate in the formation of hydrocarbons and alcohols in $\mathrm{CO}_{2} \mathrm{RR}$, and the optimization of *CO binding energy by adjusting the composition of the alloy may contribute to the formation of $\mathrm{C}-\mathrm{C}$ bond. Electrolyzing CO_{2} to multi-carbon products such as ethylene, ethanol, acetate, propanol is thought to be more promising than C_{1} products, since multi-carbon products possess higher market values and are more energy concentrated. Since CO, is the key intermediate to form C_{2+} products, a metal type with moderate CO adsorption energy is an important criterion when designing a $\mathrm{CO}_{2} \mathrm{RR}$ active metal catalyst to promote the $\mathrm{C}-\mathrm{C}$ coupling step. Au and Ag , for instance, have suitable CO binding energy. Conversely, copper (Cu) is one of the few transition metals to catalyze the electrolysis of CO_{2} to multi-carbon products at acceptable current density. Alloying copper with other metals, which have the low CO adsorption energy is an effective method to tailor and obtain multi-carbon products. Sargent et al developed a bimetallic $\mathrm{Ag} / \mathrm{Cu}$ catalyst that implements the proposed design toward an improved ethanol catalyst. It achieves a record Faradaic efficiency of 41% toward ethanol at $250 \mathrm{~mA} \mathrm{~cm}^{-2}$ and -0.67 V vs RHE, leading to a cathodic-side (half-cell) energy efficiency of $24.7 \%{ }^{59}$.

Alloying may also affect the way the reaction intermediates binds and interact collectively. Different binding modes of atoms (order, disorder and phase separation) show different selectivity for C_{1} and C_{2+} products. The geometrically separated phases tend to selectively generate C_{2+} compounds. However, the catalytic performance determined by the geometric and structural effects or electronic effects usually depends on the different bimetallic systems. Many $\mathrm{Cu}-\mathrm{M}$ bimetallic electrodes (where M refers to another metal) show high selectivity and high intrinsic activity in the production of CO. Experiments show that a variety of bimetals can convert CO_{2} to CO with the $\mathrm{FE}_{\text {co }}$ over than 80%. For example, Kenis^{54} et al synthesized a range of bimetallic $\mathrm{Cu}-\mathrm{Pd}$ catalysts with ordered, disordered, and phase-separated atomic arrangements $\left(\mathrm{Cu}_{\mathrm{at}}: \mathrm{Pd}_{\mathrm{at}}=1: 1\right)$, as well as two additional disordered arrangements $\left(\mathrm{Cu}_{3} \mathrm{Pd}\right.$ and CuPd_{3} with $\mathrm{Cu}_{\mathrm{at}}: \mathrm{Pd}_{\mathrm{at}}=3: 1$ and $\left.1: 3\right)$. When compared with the disordered and phase-separated CuPd catalysts, the ordered CuPd catalyst exhibits the highest selectivity for C_{1} products ($>80 \%$) (Fig. 8d) Phase-separated CuPd and $\mathrm{Cu}_{3} \mathrm{Pd}$ achieve higher selectivity ($>60 \%$) for C_{2+} products than CuPd_{3} and ordered CuPd, which suggests that the probability of dimerization of C_{1} intermediates is higher on surfaces with neighboring Cu atoms. Based on surface valence band spectra, geometric effects rather than electronic effects seem to be the key in determining the selectivity of bimetallic $\mathrm{Cu}-\mathrm{Pd}$ catalysts. This observation implies that the selectivity towards two different products can be tuned by geometric arrangements (Figs. 9a-c).

Fig 8. Alloying effect. (a) Surface valence band of Au-Cu bimetallic catalysts ${ }^{56}$. (b) Volcano plot of partial current density for $\mathrm{CO}_{2} \mathrm{RR}$ and $\mathrm{HER}, \mathrm{CO}_{2} \mathrm{RR}$, methane or methanol onset potentials vs. CO binding strength ${ }^{57}$. (d) $\mathrm{CO}_{2} \mathrm{RR}$ selectivity for bimetallic CuZn catalysts ${ }^{54}$. (c) CO_{2} RR selectivity for bimetallic CuPd catalysts ${ }^{58}$.

Fig 9. a, Schematic illustration of prepared CuPd nanoalloys with different structures. b, XRD patterns of prepared CuPd nanoalloys as well as previously reported Cu, Pd and CuPd alloys. c, Faradaic efficiencies for $\mathrm{CO}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ on bimetallic Cu -Pd catalysts with different mixing patterns: ordered, disordered, and phase-separated ${ }^{58}$. d, FE Distribution. e, partial current densities of products from CO_{2} reduction catalyzed by $\mathrm{Cu}, \mathrm{Cu} / \mathrm{Au}, \mathrm{Cu} / \mathrm{Au}-\mathrm{A}$ and $\mathrm{Cu} / \mathrm{Au}-\mathrm{B}$ at $-0.6 \mathrm{~V}^{55}$.

It is well known that strong interactions between two different types of metal nanoparticles can dramatically change their electrocatalytic properties. For instance, Au is well known to convert CO_{2} to CO , but the selectivity for CO was decreased when combining Au with Cu nanoparticles together. Wang group ${ }^{55}$ reported that the selectivity for formic acid is greatly enhanced when coupling Au with Cu , although Au by itself is neither high selective nor high active for electrochemical CO_{2} reduction to formic acid. $\mathrm{Cu} / \mathrm{Au}$ catalyst successfully produced formic acid at -0.4 V vs RHE in a near-neutral electrolyte and achieved a partial current density of $10.4 \mathrm{~mA} \mathrm{~cm}^{-}$ ${ }^{2}$ with a Faradaic efficiency of 81% at -0.6 V . This was notably 15 times more active and 4 times more selective than the bare Cu catalyst derived in the same way (Figs. 9d and 9e). Electrochemical and spectroscopic investigations revealed that the interactions between the Cu and the Au catalyst lead to the disappearance of Au ' characteristic electrocatalytic activity for reducing CO_{2} to CO , while it contributes to oxidize CO and stabilize Cu^{1+} species on the Cu surface during $\mathrm{CO}_{2} \mathrm{RR}$. The high selectivity for formic acid production on $\mathrm{Cu}-\mathrm{Au}$ bimetallic system opens up vast opportunities to improve the electrocatalytic reactivity using metal-metal interactions.

1.3.5 Tailoring the valence of catalyst

Numerous studies have shown that the valence of copper in copper oxides or copper-based catalyst plays a central role in the formation of multi-carbon products (Fig. 10) ${ }^{60}$ Xie et al evaluated the role of two different catalytic sites by fabricating two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. They found that at lower overpotentials, the surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production than surface cobalt atoms on bulk Co. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing them to demonstrate stable current densities of about $10 \mathrm{~mA} \mathrm{~cm}^{-2}$ over 40 hours, with approximately 90% formate selectivity at an overpotential of only 0.24 V . These findings pointed to new opportunities for manipulating and improving the CO_{2} electroreduction properties of metal systems, by controlling the structure down the atomic-scale and by the presence of metal ${ }^{61}$. Kanan group prepared Cu electrodes by annealing Cu foil in air and electrochemically reduced the resulting $\mathrm{Cu}_{2} \mathrm{O}$ layers ${ }^{62}$. The $\mathrm{CO}_{2} \mathrm{RR}$ activities of these electrodes exhibited a strong dependence on the initial thickness of the $\mathrm{Cu}_{2} \mathrm{O}$ layer. Thin $\mathrm{Cu}_{2} \mathrm{O}$ layers formed by annealing at $130^{\circ} \mathrm{C}$ showed indistinguishable activities from those of polycrystalline Cu . In contrast, the electrode of $\mathrm{Cu}_{2} \mathrm{O}$ layers formed at $500{ }^{\circ} \mathrm{C}$ exhibited the selectivity of $40 \% \mathrm{CO}$ and $33 \% \mathrm{HCOOH}^{62}$. Roldan group developed oxidized copper catalysts which displayed lower overpotentials and a record selectivity towards ethylene (60%) through facile and tunable oxygen plasma treatments ${ }^{63}$. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy showed that copper oxides are surprisingly resistant to be reduced and Cu^{+}species remain on the surface of copper electrode during the reaction. Their results demonstrated that the roughness of oxide-derived copper catalysts only plays a partial role in determining the catalytic performance, while the presence of Cu^{+}is the key for lowering the onset potential and enhancing ethylene selectivity. To control the valence of copper,

Sargent group introduced boron atom into copper catalysts. Both $\mathrm{C}_{2}+$ products selectivity and stability were found to be improved by tuning the valence of $\mathrm{Cu}^{\delta+}(0<\delta<1)$ through controlling the loading amount of boron ${ }^{64}$. Simulations showed that the ability to tune the average oxidation state of copper enables control over the adsorption of CO and its subsequent dimerization allowing the formation of C_{2+} products. As a result, a Faradaic efficiency of $79 \pm 2 \%$ for C_{2+} and a great stability of ~ 40 hours were achieved on boron-doped copper catalysts. These finding illustrate that the positive valence of copper can boost the conversion of CO_{2} to carbon products and called for additional investigations ${ }^{64}$.

Fig 10. Oxide state effect. (a) Copper K-edge XANES spectra of $\mathrm{Cu}(\mathrm{B})$ after electrochemical reduction. (b) Schematic of the process to synthesis $\mathrm{Cu}(\mathrm{B})$. (c) $\mathrm{CO}_{2} \mathrm{RR}$ performance on $\mathrm{Cu}(\mathrm{B})^{64}$.

1.3.6 Spillover effects

CO is widely regarded as an indispensable and important reaction intermediate to generate multi-carbon products in $\mathrm{CO}_{2} \mathrm{RR}$. Regulating the coverage of $* \mathrm{CO}$ on the catalyst surface has been considered an effective strategy to obtain deeply reduced C_{2+} products. In other words, the introduction additional catalytic sites to specifically produce CO can be advantageously coupled to copper for the electrocatalysis CO to C_{2} products in a two-step process (Fig. 11). For example, macrocyclic complexes and silver are regarded as good catalysts for the conversion of CO_{2} to CO. Based on this, Jaramillo et al. deposited gold on the surface of polycrystalline copper by using plasma vapor deposition, which resulted in a high selectivity towards ethanol. The team believed that the high concentration of CO produced from CO_{2} on the gold clusters contributes to favor the $\mathrm{C}-\mathrm{C}$ coupling on the surface of copper ${ }^{65}$.

Sargent et al proposed a cooperative catalyst strategy consisting of a molecule-metal catalyst interface in order to form a reaction-intermediate-rich local environment for the electrosynthesis of ethanol from CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. They implemented the strategy by functionalizing the copper surface with a family of porphyrin-based metallic complexes which are good at converting CO_{2} to CO . Density functional theory (DFT) calculations show that increasing CO coverage on Cu surface can not only reduce the reaction energy of $\mathrm{C}-\mathrm{C}$ coupling reaction, but also adjust the selectivity from ethylene to ethanol. This results in a CO_{2}-to-ethanol Faradaic efficiency of 41% and a partial current density of $124 \mathrm{~mA} \mathrm{~cm}^{-2}$ at $-0.82 \mathrm{~V} v$. RHE.

Fig 11. Proposed mechanism for the electroreduction of CO_{2} to ethanol on $\mathrm{Cu}_{\mathrm{x}} \mathrm{Zn}$ catalysts: stages $1 \rightarrow 2$, four protons and four electrons reduce two CO_{2} molecules to CO on Cu and Zn , respectively; stages $2 \rightarrow 3$, four protons and four electrons reduce CO molecule to ${ }^{*} \mathrm{CH}_{2}$ on Cu , while CO produced by Zn desorbs and migrates near the $* \mathrm{CH}_{2}$; stages $3 \rightarrow 4, \mathrm{CO}$ inserts into the bond between Cu and ${ }^{*} \mathrm{CH}_{2}$ to form $* \mathrm{COCH}_{2}$; stages $4 \rightarrow 5$, two protons and two electrons reduce ${ }^{*} \mathrm{COCH}_{2}$ to $\mathrm{CH}_{3} \mathrm{CHO}$ (acetaldehyde); stages $5 \rightarrow 6$, two protons and two electrons reduce $\mathrm{CH}_{3} \mathrm{CHO}$ to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ethanol). The protons transferred are presumably drawn from water molecules ${ }^{66}$.

1.4 Dissertation Overview

1.4.1 The Research backgrounds

The development of electrocatalytic system that can selectivity convert CO_{2} into valuable chemicals is considered as promising strategies to close the carbon cycle and mitigate the use of fossil fuels. This, however, will be only possible if this technology is technically and economically viable. Today, we witnessed a revival in the field of
electrochemistry, which has strongly benefited the $\mathrm{CO}_{2} \mathrm{RR}$. The main strategies can be classified into approaches: molecular catalysis and heterogenous catalysis.

Copper (Cu), as one of the few transition metals, can efficiently convert CO_{2} to multi-carbon products such as ethylene, ethanol, acetate, propanol. Since multi-carbon products possess higher market values and are more energy concentrated, intensive efforts have been devoted to improve the reaction selectivity towards the production of C_{2} and $\mathrm{C}_{2}+$ molecules. Examples of strategies for optimizing the Faradaic efficiency towards the production of C_{2+} species include alloying ${ }^{59,67-69}$, surface doping ${ }^{64,70}$, ligand modification ${ }^{71,72}$, and interface engineering ${ }^{43,73-75}$. Designing Cu-based catalysts by adapting some of the concept of molecular catalysts in order to finely tailor the behavior of the active sites of metallic surfaces is currently regarded as the long-standing interest for the controlled design of novel electrocatalytic materials.

Alternatively, it has been reported that partially oxidized copper ($\mathrm{Cu}^{\delta+}, 0<\delta<1$) sites on the surface of copper catalysts can facilitate the conversion of CO_{2} to multi-carbons by decreasing the energy barrier associated with the CO dimerization and the formation of *OCCOH intermediate via efficient charge transfer between the surface step sites and the intermediate ${ }^{42,60,64,76,77}$. Nevertheless, the instability of Cu^{8+} species, especially the high cathodic potentials to electro-synthesize multi-carbons, made the study of the role of $\mathrm{Cu}^{\delta+}$ tedious, and it may eventually lead to a rapid loss of the performance ${ }^{78}$. Therefore, the control of the oxidation state of Cu and the presence of Cu^{+}species on the surface of the electrodes has recently been a central focus in $\mathrm{CO}_{2} \mathrm{RR}$ notably via controlled oxidation, pulse polarization, or molecular doping ${ }^{60,79,80}$.

In this context, my PhD focuses on controlling the surface oxidation state of different Cu -based electrodes by developing molecular doping strategies. While several reports have shown that the $\mathrm{CO}_{2} \mathrm{RR}$ properties are greatly influenced by the surface chemistry of the catalyst, the engineering of the valence state of Cu using molecular dopant has remained largely unexplored. This thesis manuscript will present the results I have obtained within the last three years. Specifically, I will outline how, by grafting an organic molecule onto the Cu surface, the catalytic properties of Cu can be tuned by removing electrons from the metal surface leading to the formation of $\mathrm{Cu}^{\delta+}$ species $(0<\delta<1)$.

1.4.2 The Research contents

My research has encompassed the following topics: (1) constructing different morphology Cu -based electrodes by adjusting the electrodeposition parameters to get the best pristine structure for $\mathrm{CO}_{2} \mathrm{RR}$; (2) evaluating the valence of Cu functionalized by different electron-withdrawing/donating molecular by X-ray absorption spectroscopy (XAS) and make clear about the relationship between valence and $\mathrm{CO}_{2} \mathrm{RR}$ performance; (3) developing membrane-electrode-assembly (MEA) electrolyzers to examine the electrochemical performance of different Cu -based electrodes and achieve industrial grade current density; (4) identifying the role of the surface oxidation state of $\mathrm{Cu}^{\delta+}(0<\delta<1)$ on the selectivity and the formation rate of multi-carbon products by combining density functional theory (DFT) calculations with operando Raman and X-ray absorption spectroscopy (XAS);
(5) achieving high energy efficiency (EE, \%), high CO_{2} single-pass conversion rate (SPC, \%), and low electrical power consumption (EPC, \%) based on $\mathrm{Cu}^{\delta+}$ electrodes.

The manuscript is organized into four chapters. In the first chapter, the fundamentals of CO_{2} electrochemical reduction reaction, the methods and parameters of performance evaluation; the current state of electrochemical CO_{2} reduction reaction are introduced and discussed.

The second chapter summarizes the reported methods from literatures to suppress the main side reaction (hydrogen evolution reaction, HER) in CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ and N_{2} reduction reaction (NRR).

The third chapter develops a bimetallic Ag-Cu catalyst functionalized by thiadiazole and triazole derivatives and found that the strong electron withdrawing groups based on aromatic heterocycles can effectively orient the pathway of the $\mathrm{CO}_{2} \mathrm{RR}$ reactions towards the synthesis of C_{2+} molecules.

The last chapter is built on the results presented in the second chapter. A library of different electronwithdrawing aryl diazonium salts functionalized Cu catalysts are fabricated to elucidate the influence of Cu valence on the high selectivity of ethylene during the $\mathrm{CO}_{2} \mathrm{RR}$.

1.5 References

1 Lewis, N. S. \& Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 103, 15729-15735 (2006).
2 Olah, G. A., Goeppert, A. \& Prakash, G. S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of organic chemistry 74, 487-498 (2009).
3 Schrag, D. P. Preparing to capture carbon. science 315, 812-813 (2007).
4 Yuan, D. et al. Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid. Electrochimica Acta 54, 2912-2915 (2009).
5 Whipple, D. T. \& Kenis, P. J. Prospects of CO_{2} utilization via direct heterogeneous electrochemical reduction. The Journal of Physical Chemistry Letters 1, 3451-3458 (2010).
6 Agarwal, A. S., Zhai, Y., Hill, D. \& Sridhar, N. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4, 1301-1310 (2011).
7 Sakakura, T., Choi, J.-C. \& Yasuda, H. Transformation of carbon dioxide. Chemical reviews 107, 23652387 (2007).
8 Oloman, C. \& Li, H. Electrochemical processing of carbon dioxide. ChemSusChem: Chemistry \& Sustainability Energy \& Materials 1, 385-391 (2008).
9 Benson, E. E., Kubiak, C. P., Sathrum, A. J. \& Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO_{2} to liquid fuels. Chemical Society Reviews 38, 89-99 (2009).
10 Lee, J., Kwon, Y., Machunda, R. L. \& Lee, H. J. Electrocatalytic recycling of CO_{2} and small organic molecules. Chemistry-An Asian Journal 4, 1516-1523 (2009).

11 Windle, C. D. \& Perutz, R. N. Advances in molecular photocatalytic and electrocatalytic CO_{2} reduction. Coordination Chemistry Reviews 256, 2562-2570 (2012).

12 Wang, G. et al. Electrocatalysis for CO_{2} conversion: from fundamentals to value-added products. Chemical Society Reviews 50, 4993-5061 (2021).
13 Sanz-Perez, E. S., Murdock, C. R., Didas, S. A. \& Jones, C. W. Direct capture of CO_{2} from ambient air. Chemical reviews 116, 11840-11876 (2016).

14 Gao, P. et al. Direct conversion of CO_{2} into liquid fuels with high selectivity over a bifunctional catalyst. Nature chemistry 9, 1019-1024 (2017).
15 Aresta, M., Dibenedetto, A. \& Angelini, A. Catalysis for the valorization of exhaust carbon: from CO_{2} to chemicals, materials, and fuels. Technological use of CO_{2}. Chemical reviews 114, 1709-1742 (2014).
16 Liang, J. et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications. Small 16, 1903398 (2020).
17 Nitopi, S. et al. Progress and perspectives of electrochemical CO_{2} reduction on copper in aqueous electrolyte. Chemical reviews 119, 7610-7672 (2019).

18 Bagger, A., Ju, W., Varela, A. S., Strasser, P. \& Rossmeisl, J. Electrochemical CO_{2} reduction: a classification problem. ChemPhysChem 18, 3266-3273 (2017).
19 Laursen, A. B. et al. Electrochemical hydrogen evolution: Sabatier's principle and the volcano plot. Journal of Chemical Education 89, 1595-1599 (2012).
20 Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO_{2} electroreduction. Physical Chemistry Chemical Physics 14, 76-81 (2012).

21 Zhang, Y.-J., Sethuraman, V., Michalsky, R. \& Peterson, A. A. Competition between CO_{2} reduction and H_{2} evolution on transition-metal electrocatalysts. Acs Catalysis 4, 3742-3748 (2014).
22 Wang, Y., Han, P., Lv, X., Zhang, L. \& Zheng, G. Defect and interface engineering for aqueous electrocatalytic CO_{2} reduction. Joule 2, 2551-2582 (2018).
23 Karapinar, D. et al. Electroreduction of CO_{2} on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angewandte Chemie International Edition 58, 15098-15103 (2019).

24 Weng, Z. et al. Electrochemical CO_{2} reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. Journal of the American Chemical Society 138, 8076-8079 (2016).
25 Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. \& Strasser, P. Particle size effects in the catalytic electroreduction of CO_{2} on Cu nanoparticles. Journal of the American Chemical Society 136, 6978-6986 (2014).
26 Duan, Y. X. et al. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO_{2} reduction to liquid fuels with high faradaic efficiencies. Advanced Materials 30, 1706194 (2018).

27 Ma, M., Djanashvili, K. \& Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO_{2} over Cu nanowire arrays. Angewandte chemie international edition 55, 6680-6684 (2016).

Zhao, Z. et al. Efficient and stable electroreduction of CO_{2} to CH_{4} on CuS nanosheet arrays. Journal of Materials Chemistry A 5, 20239-20243 (2017).

Manthiram, K., Beberwyck, B. J. \& Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society 136, 1331913325 (2014).

30 Jung, H. et al. Electrochemical fragmentation of $\mathrm{Cu}_{2} \mathrm{O}$ nanoparticles enhancing selective $\mathrm{C}-\mathrm{C}$ coupling from CO_{2} reduction reaction. Journal of the American Chemical Society 141, 4624-4633 (2019).

31 Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. Acs catalysis 6, 1075-1080 (2016).

32 Schouten, K. J. P., Qin, Z., Pérez Gallent, E. \& Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. Journal of the American Chemical Society 134, 9864-9867 (2012).

33 Luo, W., Nie, X., Janik, M. J. \& Asthagiri, A. Facet dependence of CO_{2} reduction paths on Cu electrodes. ACS Catalysis 6, 219-229 (2016).

34 Huang, Y., Handoko, A. D., Hirunsit, P. \& Yeo, B. S. Electrochemical reduction of CO_{2} using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS catalysis 7, 17491756 (2017).
35 Hori, Y., Takahashi, I., Koga, O. \& Hoshi, N. Selective formation of C_{2} compounds from electrochemical reduction of CO_{2} at a series of copper single crystal electrodes. The Journal of Physical Chemistry B 106, 15-17 (2002).

36 Hori, Y., Takahashi, I., Koga, O. \& Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A: Chemical 199, 39-47 (2003).
37 Wang, Y. et al. Catalyst synthesis under CO_{2} electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis 3, 98-106 (2020).
38 Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO_{2} : Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences 114, 5918-5923 (2017).

39 Reller, C. et al. Selective electroreduction of CO_{2} toward ethylene on nano dendritic copper catalysts at high current density. Advanced Energy Materials 7, 1602114 (2017).

40 Yang, K. D. et al. Morphology-directed selective production of ethylene or ethane from CO_{2} on a Cu mesopore electrode. Angewandte Chemie 129, 814-818 (2017).
41 Xie, C., Niu, Z., Kim, D., Li, M. \& Yang, P. Surface and interface control in nanoparticle catalysis. Chemical reviews 120, 1184-1249 (2019).

42 Xiao, H., Goddard, W. A., Cheng, T. \& Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO_{2} activation and CO dimerization for electrochemical reduction of CO_{2}. Proceedings of the National Academy of Sciences 114, 6685-6688 (2017).

Varandili, S. B. et al. Synthesis of $\mathrm{Cu} / \mathrm{CeO}_{2-x}$ nanocrystalline heterodimers with interfacial active sites to promote CO_{2} electroreduction. Acs Catalysis 9, 5035-5046 (2019).
44 Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature communications 10, 1-7 (2019).

45 Liu, Y. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron-and nitrogen-Co-doped nanodiamond. Angewandte Chemie 129, 15813-15817 (2017).
46 Liu, Y., Chen, S., Quan, X. \& Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. Journal of the American Chemical Society 137, 11631-11636 (2015).
47 Wang, H. et al. Synergistic enhancement of electrocatalytic CO_{2} reduction to C 2 oxygenates at nitrogendoped nanodiamonds/Cu interface. Nature Nanotechnology 15, 131-137 (2020).
48 Zhu, W., Tackett, B. M., Chen, J. G. \& Jiao, F. Bimetallic electrocatalysts for CO_{2} reduction. Electrocatalysis, 105-125 (2020).

49 Watanabe, M., Shibata, M., Katoh, A., Sakata, T. \& Azuma, M. Design of alloy electrocatalysts for CO2 reduction. Journal of Electroanalytical Chemistry 305, 319-328 (1991).
50 Watanabe, M., Shibata, M., Katoh, A., Sakata, T. \& Azuma, M. Design of alloy electrocatalysts for CO_{2} reduction: improved energy efficiency, selectivity, and reaction rate for the CO_{2} electroreduction on Cu alloy electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry 305, 319-328 (1991).
51 Lamaison, S. et al. $\mathrm{Zn}-\mathrm{Cu}$ Alloy Nanofoams as Efficient Catalysts for the Reduction of CO_{2} to Syngas Mixtures with a Potential-Independent $\mathrm{H}_{2} / \mathrm{CO}$ Ratio. ChemSusChem 12, 511-517 (2019).
52 Jedidi, A., Rasul, S., Masih, D., Cavallo, L. \& Takanabe, K. Generation of Cu-In alloy surfaces from CuInO_{2} as selective catalytic sites for CO_{2} electroreduction. Journal of Materials Chemistry A 3, 19085-19092 (2015).

53 Tan, D. et al. $\mathrm{Cu} x \mathrm{Ni}$ y alloy nanoparticles embedded in a nitrogen-carbon network for efficient conversion of carbon dioxide. Chemical science 10, 4491-4496 (2019).
54 Ma , S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic $\mathrm{Cu}-\mathrm{Pd}$ catalysts with different mixing patterns. Journal of the American Chemical Society 139, 47-50 (2017).

55 Tao, Z., Wu, Z., Yuan, X., Wu, Y. \& Wang, H. Copper-gold interactions enhancing formate production from electrochemical CO_{2} reduction. ACS Catalysis 9, 10894-10898 (2019).

Kim, D., Resasco, J., Yu, Y., Asiri, A. M. \& Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nature communications 5, 1-8 (2014).
57 Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society 136, 14107-14113 (2014).

58 Jeon, H. S. et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO_{2} reduction. Journal of the American Chemical

Society 141, 19879-19887 (2019).
$59 \mathrm{Li}, \mathrm{Y} . \mathrm{C}$. et al. Binding site diversity promotes CO_{2} electroreduction to ethanol. Journal of the American Chemical Society 141, 8584-8591 (2019).

60 Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. \& Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu (i) species in C_{2+} product selectivity during CO_{2} pulsed electroreduction. Nature Energy 5, 317-325 (2020).

61 Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68-71 (2016).

Li, C. W. \& Kanan, M. W. CO_{2} reduction at low overpotential on Cu electrodes resulting from the reduction of thick $\mathrm{Cu}_{2} \mathrm{O}$ films. Journal of the American Chemical Society 134, 7231-7234 (2012).

63 Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature communications 7, 1-9 (2016).

64 Zhou, Y. et al. Dopant-induced electron localization drives CO_{2} reduction to C_{2} hydrocarbons. Nature chemistry 10, 974-980 (2018).
65 Morales-Guio, C. G. et al. Improved CO_{2} reduction activity towards C_{2+} alcohols on a tandem gold on copper electrocatalyst. Nature Catalysis 1, 764-771 (2018).
66 Ren, D., Ang, B. S.-H. \& Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived $\mathrm{Cu} \times \mathrm{Zn}$ catalysts. Acs Catalysis 6, 8239-8247 (2016).

67 Hoang, T. T. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO_{2} to ethylene and ethanol. Journal of the American Chemical Society 140, 57915797 (2018).

68 Lee, S., Park, G. \& Lee, J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO_{2} to ethanol. Acs Catalysis 7, 8594-8604 (2017).
69 Chen, C. et al. $\mathrm{Cu}-\mathrm{Ag}$ tandem catalysts for high-rate CO_{2} electrolysis toward multicarbons. Joule 4, 16881699 (2020).

70 Clark, E. L., Hahn, C., Jaramillo, T. F. \& Bell, A. T. Electrochemical CO_{2} reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. Journal of the American Chemical Society 139, 15848-15857 (2017).

71 Buckley, A. K. et al. Electrocatalysis at organic-metal interfaces: identification of structure-reactivity relationships for CO_{2} reduction at modified Cu surfaces. Journal of the American Chemical Society 141, 73557364 (2019).

72 Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. \& Agapie, T. CO_{2} reduction selective for $\mathrm{C} \geq 2$ products on polycrystalline copper with N -substituted pyridinium additives. ACS central science 3, 853-859 (2017).

73 Cui, W. G. \& Hu, T. L. Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis. Small 17, 2003971 (2021).

74 Bai, S. et al. Highly active and selective hydrogenation of CO_{2} to ethanol by ordered $\mathrm{Pd}-\mathrm{Cu}$ nanoparticles. Journal of the American Chemical Society 139, 6827-6830 (2017).
75 Huang, J., Mensi, M., Oveisi, E., Mantella, V. \& Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO_{2} reduction revealed by $\mathrm{Ag}-\mathrm{Cu}$ nanodimers. Journal of the American Chemical Society 141, 2490-2499 (2019).

76 De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis 1, 103-110 (2018).

77 Eilert, A., Roberts, F. S., Friebel, D. \& Nilsson, A. Formation of copper catalysts for CO_{2} reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. The journal of physical chemistry letters 7, 1466-1470 (2016).
78 Lee, S., Kim, D. \& Lee, J. Electrocatalytic production of $\mathrm{C}_{3}-\mathrm{C}_{4}$ compounds by conversion of CO_{2} on a chloride-induced bi-phasic $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Cu}$ catalyst. Angewandte Chemie 127, 14914-14918 (2015).

79 Dinh, C.-T. et al. CO_{2} electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783-787 (2018).

80 Li, F. et al. Molecular tuning of CO_{2}-to-ethylene conversion. Nature 577, 509-513 (2020).

Chapter 2. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions

2.1 Abstract

Carbon and nitrogen fixation strategies are regarded as alternative routes to produce valuable chemicals used as energy carriers and fertilizers that are traditionally obtained from nonsustainable and energy-intensive coal gasification $\left(\mathrm{CO}\right.$ and $\left.\mathrm{CH}_{4}\right)$ Fischer-Tropsch $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and Haber-Bosch $\left(\mathrm{NH}_{3}\right)$ processes. Recently, the electrocatalytic CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ and N_{2} reduction reaction (NRR) have received tremendous attention with the merits of being energy-saving and environmentally friendly. To date, the development of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR processes is primarily hindered by the competitive hydrogen evolution reaction (HER), however the corresponding strategies for inhibiting this undesired side reaction are still quite limited. Considering such complex reactions involving three gas-liquid-solid phases and successive proton-coupled electron transfers, it appears meaningful to review the current strategies for improving product selectivity in light of their respective reaction mechanisms, kinetics, and thermodynamics. Herein, based on the reaction pathways, we examine and discuss the recent progress in inhibiting the HER and optimizing the selectivity of the electrocatalytic $\mathrm{CO}_{2} \mathrm{RR}$ and NRR by focusing on the following strategies: (a) limiting the proton/electron transfer kinetics; (b) shifting the chemical equilibrium, and (c) designing novel electrocatalysts and electrolytic systems. This review provides insights into the enhancement of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR selectivity and efficiency by focusing on the activation of CO_{2} and N_{2} molecules on the catalyst surface, the regulation of the gas-liquid-solid three-phase interface and the development of novel electrolyzers.

2.2 Introduction

Excessive consumption of fossil fuels such as oil, coal, and natural gas has produced a record-breaking level of atmospheric carbon dioxide $\left(\mathrm{CO}_{2}\right)$, resulting in the adverse effect of climate change and the aggravation of the energy crisis (Fig. 1a). ${ }^{1,2}$ Nitrogen (N_{2}) fixation via the conversion of atmospheric nitrogen to ammonia $\left(\mathrm{NH}_{3}\right)$ has been regarded as one of the most important challenges in the industry. Ammonia not only plays a key role in producing fertilizers to sustain the rising global population, but also serves as a green energy carrier and an alternative fuel, as demonstrated in Fig. 1b. ${ }^{3-5}$ An appealing solution would consist of the fixation of CO_{2} and N_{2}, which are highly abundant feedstocks, into valuable carbonaceous compounds such as carbon monoxide (CO), formic acid (HCOOH), methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$, ammonia $\left(\mathrm{NH}_{3}\right)$ and urea $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$, powered by renewable sources. ${ }^{6,7,8,9}$ In this context, the creation of large-scale electrolysis systems powered by solar, wind, wave, and hydro energy can relieve our dependence on the dwindling supplies of fossil fuels. However, owing to their intermittent nature, the fraction of energy generated from renewable sources is limited to only 30% unless practical strategies for large-scale energy storage become available. ${ }^{10}$

Among the various fixation strategies, electrocatalysis could be massively developed for the conversion and chemical storage of renewable energy in the form of fuels, as it can meet its promises in terms of cost efficiency and stability. ${ }^{11}$ However, in aqueous electrolytes, the hydrogen evolution reaction (HER) occurs at potential ranges comparable to those associated with the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR. This, combined with a large number of available protons near the active sites makes the HER dominant, which results in an extremely low Faradaic efficiency and limits the product selectivity towards the desired hydrocarbons and ammonia. ${ }^{12,13}$ To overcome the HER during both the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR, investigations have focused on designing novel catalytic materials with improved selectivity, and limiting the accessibility of electrons and/or protons during the successive electrochemical steps. ${ }^{14}$ In addition, in the context of $\mathrm{CO}_{2} \mathrm{RR}$ to multi-carbon products, increasing the availability of primary reduction products such as CO in the vicinity of the electrode surface is a key parameter to maximize selectivity towards multi-carbon products.

There exists an extensive amount of literature in both $\mathrm{CO}_{2} \mathrm{RR}$ and NRR fields, including several recent reviews of specific subtopics. ${ }^{15-18}$ Through a handful of selected examples we review the strategies for increasing selectivity towards value-added products in these emerging fields. The first part of the review provides an overview of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR from a mechanistic and thermodynamic point of view. We then analysis the literature for optimizing catalyst selectivity by engineering the catalyst surface and the reaction interfaces. The third section of the review presents recent developments in electrolytes, notably ionic liquids and polymer-based electrolytes. This is followed by an overview of recent research on catalyst surface modification and three-phase interface engineering. In the last section, we expose the current challenge and future developments in the field.

Fig 1. (a) Scheme of the carbon cycle. Reproduced from Ref. ${ }^{2}$ with permission from Nature Publishing Group. (b) Cycle of biologically driven N -transformations that occur in natural and human-influenced terrestrial and marine environments. Reproduced from Ref. ${ }^{5}$ with permission from the Royal Society of Chemistry.

2.3 Mechanistic and thermodynamic origin of multiple product generation in CO2RR and NRR

Both $\mathrm{CO}_{2} \mathrm{RR}$ and NRR to value-added products involve multiple successive proton-coupled electron transfers (Table 1), which represent a significant kinetic challenge to be overcome to achieve high selectivity, in particular compared to the more kinetically facile two-electron hydrogen generation reaction. ${ }^{19-21}$ This kinetic challenge is
in addition further complexified by the low availability of the reactants, as both CO_{2} and N_{2} have typically poor solubility in aqueous electrolytes.

Table 1. Selected standard potentials of CO_{2} and N_{2} in aqueous solutions (V vs. SHE) at 1.0 atm and $25^{\circ} \mathrm{C}$, calculated according to the standard Gibbs energies of the reactants in reactions. Reproduced from Ref. ${ }^{22}$ with permission from American Chemical Society.

$$
\begin{gather*}
2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2} \quad\left(E^{0}=0 \mathrm{~V} \text { vs.SHE }\right) \tag{1}\\
\mathrm{N}_{2}+8 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{NH}_{4}^{+} \quad\left(E^{0}=0.274 \mathrm{~V} \text { vs.SHE }\right) \tag{2}\\
\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \quad\left(E^{0}=-0.106 \mathrm{~V} \text { vs.SHE }\right) \tag{3}\\
\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{HCOOH} \quad\left(E^{0}=-0.250 \mathrm{~V} \text { vs.SHE }\right) \tag{4}\\
2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 e^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+4 \mathrm{H}_{2} \mathrm{O} \quad\left(E^{0}=0.064 \mathrm{~V} \text { vs.SHE }\right) \tag{5}\\
2 \mathrm{CO}_{2}+12 \mathrm{H}^{+}+12 e^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{H}_{2} \mathrm{O} \quad\left(E^{0}=0.084 \mathrm{~V} \text { vs.SHE }\right) \tag{6}
\end{gather*}
$$

In addition, a thermodynamic challenge is associated to the $\mathrm{CO}_{2} \mathrm{RR}$, since proton reduction (HER) is more thermodynamically favourable than the reduction of CO_{2} to most products (Fig. 2a and Equations 3-6). ${ }^{22-24}$ Although less critical in the case of NRR, the standard electrochemical potential for the proton reduction reaction is yet close to that of the nitrogen reduction reaction (NRR) at $0.057 \mathrm{~V} v s$. SHE (Equation 2). The intrinsic stronger binding of H atoms over N_{2} on most metal surfaces, highlighted in Fig. 2b, further illustrates that challenge to increase NRR selectivity vs. HER.

Fig 2. (a) Kinetic versus thermodynamic requirements of various CO_{2} reduction reactions. The plotted values are based on the reaction equation given above the graph, made stoichiometric according to the product composition. Reproduced from Ref. ${ }^{24}$ with permission from Nature Publishing Group. (b) Combined volcano diagrams (lines) for the flat (black) and stepped (red) transition metal surfaces for the reduction of nitrogen with a Heyrovsky-type reaction, without (solid lines) and with (dotted lines) H-bond effects. Reproduced from Ref. ${ }^{25}$ with permission from the Royal Society of Chemistry.

This illustrate that three main challenges (thermodynamic, kinetic, or related to the mass-transport of the reactants) have to be overcome to reach high selectivity in $\mathrm{CO}_{2} \mathrm{RR}$ and NRR. We will review in the next sections the three main axes currently explored toward that goal, being concentrated on catalyst design, electrolyte engineering and three-phase interface modulation.

2.4 Increasing selectivity via catalyst design

2.4.1 Catalyst nano-structuring for improved mass transport

Advancements in nanotechnology and characterization techniques have enabled a plethora of morphologies to be explored to improve catalytic activity and product selectivity. Porous materials have attracted particular attention due to their effect on the local chemical environment, including local pH and the mass transport of the reactant and intermediates. ${ }^{38,39}$ The ability to increase effective active sites, both by maximizing surface area and facilitating the accessibility of such sites, makes porosity useful and interesting across a broad range of fields. ${ }^{40}$ Such effects are especially crucial when considering the poor solubility of CO_{2} and N_{2} in aqueous electrolytes, which cause mass transport limitations and barriers to high activity and selectivity.

Hierarchical porous networks are found commonly in biological organisms as a strategy to mitigate mass transport limitations in the utilization of nutrients. ${ }^{41}$ The three-dimensional networks were replicated in early work by Huan et al. who used gold nanodendrites for electrochemical sensing. ${ }^{42}$ Their application in catalysis has recently appeared as an efficient strategy to increase current densities and catalyst selectivity in small molecule electroreduction and oxidation.

The dynamic hydrogen bubble templating (DHBT) method has been the most prominent technique to create such hierarchical porosity, which was recently comprehensively reviewed by the Bhargava group ${ }^{43}$ and specifically for $\mathrm{CO}_{2} \mathrm{RR}$ materials by the Broekmann group. ${ }^{44}$ The process involves the electrodeposition of a metal from aqueous solutions of the respective cations, while co-generated hydrogen bubbles act as a dynamic template to create a metal foam. As the bubbles nucleate, grow and detach, a hierarchical pore structure forms with layers of pores of increasing diameter (Fig. 3a), including micropores in the submicron range and macropores $10-100 \mu \mathrm{~m} .{ }^{43}$ The DHBT technique is relatively simple, requiring aqueous solutions and no need for organic or inorganic templates (as in traditional metal foam synthesis), ${ }^{45}$ high temperatures, high pressures or uncommon equipment. Nonetheless, additives such as citrate are common to influence crystal growth. ${ }^{46-48} \mathrm{Bi}$ and multi-metallic catalysts are also possible by co-electrodeposition, galvanic replacement, stepwise electrodeposition or spontaneous decoration. ${ }^{43}$ For example, many studies for $\mathrm{CO}_{2} \mathrm{RR}$ have coupled copper with one other metal such as Ag, Sn, In or $\mathrm{Zn} .{ }^{49-53}$

By fine-tuning parameters such as proton source and concentration, applied overpotential or current density, substrate material, and the metal source and concentration, the nanostructure can be carefully controlled and optimized. Broekmann and co-workers produced a dendritic Cu-based DHBT foam, and demonstrated a strong dependence of the C_{2}-product selectivity on the surface pore size diameter, with the optimal size being between

50 and $100 \mu \mathrm{~m} .{ }^{54}$ They identified the temporal trapping of gaseous intermediates inside these pores as the key to product selectivity. Intermediates such as CO and $\mathrm{C}_{2} \mathrm{H}_{4}$, which would otherwise be released into the bulk electrolyte, were entrapped in the pores of the foam catalyst, causing them to further react to form $\mathrm{C}_{2} \mathrm{H}_{6}$ (Fig. 3b). At -0.8 V vs RHE they achieved a 55% faradaic efficiency for C_{2}-products.

Such dendritic structures with large surface areas are common in this synthesis due to the deposition taking place at high current densities and therefore in the diffusion limited regime. Copper and oxide derived copper dendrites have had particular interest due to their apparent selectivity for multicarbon products. ${ }^{55-58}$ Huan et al. produced a dendritic CuO material from DHBT that could be used both as a $\mathrm{CO}_{2} \mathrm{R}$ and OER catalyst. ${ }^{59,60}$ It consisted of a triple layer structure with a metallic Cu core covered by layers of $\mathrm{Cu}_{2} \mathrm{O}$ and CuO (Fig. 3c). In electrocatalytic conditions, the CuO material is reduced to metallic Cu , generating nano-Kirkendall voids within the dendrite structures. These gas-accessible voids were proposed to enhance the confinement of secondary $\mathrm{CO}_{2} \mathrm{RR}$ products, such as CO , resulting in $\mathrm{FE}_{\mathrm{C} 2+}$ over 50%. By applying a continuous flow electrolyzer, they were able to reach a stable current of $25 \mathrm{~mA} / \mathrm{cm}^{2}$ with 2.95 V , equating to 21% energy efficiency for hydrocarbon production. By coupling the cell to a photovoltaic cell, they achieved a 2.3% solar-to-hydrocarbon efficiency. DHBT foams for single-carbon products such as CO and formate have also been reported. A silver-foam with needle-shaped features in the mesopores was produced by using a citrate additive to control growth on the nanometer scale. ${ }^{46}$ Between -0.3 to -1.2 V vs RHE 90% faradaic efficiency for CO was observed, however at higher over-potentials they produced C_{2}-products, with $51 \% \mathrm{CH}_{4}$ at -1.5 V (Fig. 3d). This unusual activity for Ag was attributed to the catalyst morphology and nanostructure increasing *CO surface concentration and residence time. Recent work by Mayer and co-workers exemplifies the advantages of the simplicity of the DHBT method. In a one-step synthesis they used waste industrial $\mathrm{Cu}-\mathrm{Sn}$ bronze as a material precursor to deposit a mesoporous $\mathrm{Cu}_{10} \mathrm{Sn}$ foam. ${ }^{61}$ They achieved over 85% faradaic efficiency for CO at -0.8 V vs RHE, over double that of the plain $\mathrm{Cu}-\mathrm{Sn}$ bronze, with partial current densities three times higher. Du et al. prepared a nanoporous tin DHBT foam on a tin substrate and achieved a faradaic efficiency for formate of 90% with current densities of $23 \mathrm{~mA} / \mathrm{cm}^{2}$.

Fig 3. (a) Schematic illustration and SEM image of a copper DHBT foam, demonstrating the hierarchical pore structure. Reproduced from Ref. ${ }^{43}$ and Ref. ${ }^{56}$ with permission from the Royal Society of Chemistry and IOP Publishing. (b) Schematic illustration of gaseous $\mathrm{CO}_{2} \mathrm{R}$ intermediates $\left(\mathrm{CO}\right.$ and $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and by-products $\left(\mathrm{H}_{2}\right)$ trapped within the porous Cu foam catalyst. Reproduced from Ref. ${ }^{54}$ with permission from the American Chemical Society. (c) Schematic illustration of a dendritic CuO DHBT-foam before (top) and after (bottom) CO_{2} electroreduction in $0.1 \mathrm{M} \mathrm{CsHCO}_{3}$, showing the material reduction to metallic Cu and the formation of nano-Kirkendall voids. Reproduced from Ref. ${ }^{60}$ with permission from the Proceedings of the National Academy of Sciences. (d) Potential dependent product distribution of the $\mathrm{CO}_{2} \mathrm{RR}$ using a Ag-DHBT-foam catalyst by faradaic efficiency, showing the formation of hydrocarbons at potentials more negative than -1.2 V vs RHE. Reproduced from Ref. ${ }^{46}$ with permission from the American Chemical Society.

Other morphology-based strategies have been utilized to modulate mass transport in CO_{2} reduction, including the application of nanostructures such as nano-wires, sheets, needles, cones or tubes. Burdyny et al. explored the effect of nanomorphology of a silver catalyst on gas-evolution and subsequently bubble-induced mass transport. ${ }^{62}$ By combing mathematical modelling and experimental observations using a dark field microscope, they compared bubble formation on nanoparticles, nanorods and nanoneedles, and found a mean bubble diameter of 97,31 and $23 \mu \mathrm{~m}$ respectively. They illustrated that the generation of smaller bubbles improved long-range mass transport of CO_{2}, resulting in a small diffusion thickness and a 4-fold increase in limiting current density of CO production (Fig. 4a). Surendranath and co-workers synthesised gold inverse opal thin films and found that changing the mesostructure by increasing porous film thickness could diminish HER 10-fold whilst maintaining activity for CO_{2} to CO , enhancing the faradaic efficiency for CO from less than 5% to over $80 \%{ }^{6}$ They attributed this to the formation of diffusional gradients. Studies into nanocavities and their performance and mechanism of action have emerged in recent years. Yang et al. utilised finite-element method simulations and experimental measurements on a multihollow cuprous oxide catalyst. ${ }^{64}$ Analysis from X-ray absorption studies and operando Raman spectra indicated that the pore cavities confined $* \mathrm{CO}$ intermediates, which bound to Cu^{+}
sites and locally protected them against reduction during CO_{2} RR (Fig. 4b), as well as promoted C-C coupling. They achieved a C_{2+} product faradaic efficiency of 75% and partial current density of $267 \mathrm{~mA} \mathrm{~cm}^{-2}$.

As N_{2} reduction is a comparatively new field with its own unique challenges, studies into morphological effects on catalytic activity and selectivity are less extensive. Although a range of nanostructures exist amongst the literature, ${ }^{65}$ specific insight into the role morphology plays in catalysis is limited. Kumar et al. produced a multibranched PdCuIr catalyst with long-spined sea-urchin-like morphology. ${ }^{66}$ The nanostructure had interconnected channels that could facilitate mass and charge transfer, yielding $13.43 \mu \mathrm{~g} \mathrm{~h}^{-1} \mathrm{mg}_{\text {cat. }}{ }^{-1} \mathrm{NH}_{3}$ at a faradaic efficiency of 5.29 \% (Fig. 4d). Another approach is to use porous frameworks as a support for catalysts. Wei et al. loaded ruthenium nanoparticles onto carbon nanotubes, which were also applied as the gas diffusion electrode. ${ }^{67}$ Despite using a typical H-cell set-up, the GDE structure allowed N_{2} gas to be flowed through the GDE and porous catalyst, instead of being solely solubilised in the electrolyte (Fig. 4c). They achieved a NH_{3} yield rate of $2.1 \mathrm{nmol} / \mathrm{cm}^{2} \mathrm{~s}$ and faradaic efficiency of 13.5%. Wang et al. deposited a porous Au film on a Ni foam. ${ }^{68}$ They reported a NH_{3} yield rate of $9.42 \mu \mathrm{~g} \mathrm{~h} \mathrm{~cm}^{-1}$ and faradaic efficiency of 13.36% at -0.2 V vs RHE, which they attributed partly to the interconnected porous structure.

A great range of nanostructures have been applied to the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR to regulate mass transport, and although strong correlations between structure and performance have been made, their mechanisms of action are often highly complex and difficult to define. Most theories focus on the mass transport of reactants and intermediates either through improved diffusion and convection or through their physical confinement in the catalyst pores. Considerable progress has been made by combining computational and experimental research, especially in the $\mathrm{CO}_{2} \mathrm{R}$ field, however their application to new materials and fields such as $\mathrm{N}_{2} \mathrm{R}$ could be improved.

Fig 4. (a) Schematic showing the effect of catalyst nanostructure on bubble departure diameter and its impact on the diffusion boundary layer thickness and CO_{2} mass transport. Reproduced from Ref ${ }^{62}$ with permission from the American Chemical Society. (b) Schematic of a cuprous oxide catalyst with nanocavities that confine carbon intermediates such as

CO and $\mathrm{C}_{2} \mathrm{H}_{4}$. White: hydrogen; grey: carbon; red: oxygen; pink: copper. Reproduced from Ref. ${ }^{64}$ with permission from the American Chemical Society. (c) Schematic illustration (left to right) and picture (middle-top) of the NRR in an H-cell with a microtubular Ru-CNT (carbon nanotube) gas diffusion electrode. Reproduced from Ref. ${ }^{67}$ with permission from the European Chemical Societies Publishing. (d) TEM image of a PdCuIr catalyst with long-spined sea-urchin-like morphology. Reproduced from Ref. ${ }^{66}$ with permission from the Royal Society of Chemistry.

2.4.2 Surface functionalization

Functionalizing the surface of the electrode or catalyst by organic or inorganic ligands has been frequently reported to adjust the interaction between adsorbed intermediates and catalysts, which not only inhibits the HER but also enhances the product selectivity. The concept of surface-bound ligands can be extended to covalently bonded molecules of the catalysts to tune the surface chemistry. In this section, we will review the different functionalization strategies that have been reported in $\mathrm{CO}_{2} \mathrm{RR}$ and NRR (Fig. 5a). ${ }^{69}$ To date, many organic additives, including amino acids, cysteamine, thiols, pyridinium, N -heterocyclic carbenes (NHCs), imidazolium salts, and inorganic anions, have been proposed to control the binding energy of $\mathrm{CO}_{2} \mathrm{RR}$ reaction intermediates. ${ }^{.0071}$ For instance, Kim et al. demonstrated a 94.2% FE for the production of CO from amine-capped Ag supported on carbon, thanks to the effective suppression of the HER and the intrinsic high selectivity towards the $\mathrm{CO}_{2} \mathrm{RR}$ from Ag (Fig. 5b). ${ }^{72}$ DFT calculations suggested that the amine-capped Ag nanoparticles stabilize the ${ }^{*} \mathrm{COOH}$ intermediate while destabilizing $* H .{ }^{73}$ Conversely, thiol-capped Ag nanoparticles exhibited superior reaction rates towards both the HER and CO_{2} reduction by indiscriminately increasing $\Delta \mathrm{G} * \mathrm{H}$ and $\Delta \mathrm{G} *$ Соон .

As presented in Fig. 5c, Zhao et al. developed a simple modification strategy using amines to depress the hydrogen evolution reaction on ultrasmall Au NPs and promote CO_{2}-to- CO conversion. ${ }^{74}$ The amine groups, as well as the molecular configuration, were found to play important roles in tuning the electrocatalytic activity of low-coordinated sites of the nanoparticles. The authors claimed that strong interactions between Au and the amine groups combined with the peculiar configuration are responsible for the improved $\mathrm{CO}_{2} \mathrm{RR}$ performance. Remarkably, linear amines promoted the formation of CO , an effect which was enhanced by increasing the length of the alkyl chain, whereas the branched polyamine greatly depressed it. Wang et al. demonstrated 55\% and 77\% selectivities for ethylene and C_{2+} products, respectively, using a tricomponent copolymer to modify the surface of Cu electrodes. ${ }^{75}$ Control experiments indicated that all three components of the copolymer are necessary for enhancing selectivity. The copolymer was obtained by ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Xiao et al. successfully modified the d-band structure of a self-supporting nanoporous $\mathrm{Mo}_{4} \mathrm{P}_{3}$ catalyst by capping with a fluorosilane hydrophobic layer (Fig. 5d). ${ }^{76}$ This approach weakens the ability to adsorb protons and simultaneously prevents water from approaching the active sites, thus further suppressing the HER. Hydrophobic $\mathrm{Mo}_{4} \mathrm{P}_{3}$ exhibits outstanding NRR performance, with an FE of as high as 10.1% and an NH_{3} yield of $17.3 \mu \mathrm{~g} \mathrm{~h}^{-1} \mathrm{~cm}^{-2}$. This strategy opens avenues for suppressing the HER and could be extended to other metal catalysts for the NRR and $\mathrm{CO}_{2} R R$.

This field is rapidly growing, and we list below some important insights. Functionalizing metal electrodes with a reductive organic additive or an inorganic anion benefits hydrocarbon selectivity. The presence of selected organic films on the electrode promotes the reduction reactions at some potentials, while the inorganic anions are linked to increased adsorbed $\mathrm{CO}_{\text {ads }}$ coverage on the catalyst surface, thus stabilizing the intermediate. ${ }^{77,78}$ The exact surface binding motifs of the ligands and precise mechanism for altered selectivity are still unclear. Understanding the precise nature of the interface remains a key challenge for attaining the desired catalytic properties. ${ }^{79}$

Fig 5. (a) Surface modifiers grouped into different classes used to modulate the local chemical environment around the catalytic site. (amino acids, amines, N-heterocyclic carbenes, thiols, imidazolium, three-dimensional cavities, N arylpyridinium salts and derivatives). Reproduced from Ref. ${ }^{69}$ with permission from Nature Publishing Group. (b) Schematic of the product selectivity, depending on the Ag NPs immobilized with an amine (or thiol)-containing anchoring agent. Reproduced from Ref. ${ }^{72}$ with permission from the American Chemical Society. (c) FECO (column) and j_{CO} (circle) of gold catalysts with different surface amine modifications in CO_{2}-saturated $0.1 \mathrm{M}_{\mathrm{KHCO}_{3}}$ at -0.7 V vs. RHE. Reproduced from Ref. ${ }^{74}$ with permission from Wiley. (d) Interface structure after 12 ns molecular dynamics simulations with a water/ Cu interface and random copolymer with a water/Cu interface. Colour code: Cu , orange; C , grey; O, red; N, blue; F, pink; S, cyan; H, white. Reproduced from Ref. ${ }^{75}$ with permission from the American Chemical Society. (e) Possible NRR mechanism at the surface of the hydrophobic catalyst. Reproduced from Ref. ${ }^{76}$ with permission from Elsevier.

2.4.3 Crystal size and facet control

Tremendous advances have recently been made to engineer catalysts to lower the HER during the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR processes. ${ }^{26}$ Compared with their bulk counterparts, nanostructured catalysts show original and often enhanced activity owing to their unique surface electronic and chemical properties. These properties can be finely adjusted to tune the activity and selectivity of electrocatalytic reactions. The surface of a nanomaterial catalyst typically consists of planar areas with single-crystalline orientations separated by steps and kink sites with lower coordination numbers. Complex atomic structures are therefore present at the interface between different grains in polycrystalline and/or nanostructured surfaces. Buonsanti et al. investigated the catalytic properties of exposed facets of Cu nanocatalysts at commercially relevant current densities (Fig. 6a). ${ }^{27}$ The study revealed that facetdependent selectivity could be retained in a gas-fed flow cell, showing greater HER suppression than a conventional H-cell. The (100) facets of Cu nanocubes have been identified to be selective for the evolution of $\mathrm{C}_{2} \mathrm{H}_{4}$, whereas the (111) facets of Cu octahedra are selective towards CH_{4}. Conversely, Cu spheres do not exhibit any specific product selectivity, suggesting that randomly mixed facets cannot depress the HER during the CO_{2} RR. Chorkendorff et al. systematically investigated the structure-selectivity relationship of Au single crystals for electrocatalytic CO_{2} reduction (Fig. 6b). ${ }^{28}$ Remarkably, they found that the kinetics for the formation of CO strongly depend on the surface structure. Under-coordinated sites, for instance, on the surface of $\mathrm{Au}(110)$ or at the step edges of $\mathrm{Au}(211)$, show at least 20 -fold higher activity than more coordinated configurations - such as $\mathrm{Au}(100)$. By selectively poisoning under-coordinated sites with Pb , they identified the selectivity of these active sites towards the reduction of CO_{2}, effectively suppressing the HER.

Strasser et al. investigated the role of particle size in CO_{2} electroreduction using size-controlled Cu nanoparticles (NPs). ${ }^{29}$ A dramatic increase in the catalytic activity and selectivity of CO against H_{2} was observed once the particle size was decreased, particularly for NPs smaller than 5 nm , as shown in Fig. 6c. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to H_{2} and CO selectivity. As shown in the inset of Figure 3c, a drastic increase in undercoordinated atoms is observed below a particle size of 2 nm with a coordination number lower than 8 . These peculiar sites accelerate both hydrogen evolution and CO_{2} reduction to CO via an increase in binding energy. However, the undercoordinated sites are unfavourable for the subsequent hydrogenation of CO, which lowers the hydrocarbon selectivity of the NPs. A plausible explanation for the observed trend is the reduced mobility of intermediate reaction species (CO and H) on the small NPs due to stronger bonding, which decreases the possibility of further recombination to form hydrocarbons. At intermediate particle sizes, the spherical particle model predicts low and constant populations of (100) and (111) facets, which is consistent with the reduced yet constant hydrocarbon selectivities observed for Cu NPs between 5 and 15 nm compared to Cu bulk surfaces. For these larger NPs, weaker binding of CO and H is expected, favouring hydrocarbon formation.

Another critical parameter for suppressing the HER with metal NP catalysts is the interparticle spacing. Mesoscale phenomena, such as interparticle reactant diffusion and re-adsorption of intermediates, can play an important role in the product selectivity for multistep reactions. ${ }^{30,31}$ In this context, Mistry et al. showed that for
CO_{2} electroreduction, decreasing the interparticle spacing for a constant nanoparticle size can suppress the HER, which further increases the selectivity for CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{4}$ owing to the increased possibility of the ${ }^{*} \mathrm{CO}$ intermediate re-adsorbing on a neighbouring particle and being further reduced (Fig. 6d and 6e). ${ }^{32}$ More importantly, this study uncovers general principles of tailoring NP activity and selectivity by carefully engineering the size and distance. These principles guide the rational design of mesoscopic catalyst architectures to enhance the production of the desired reaction products. ${ }^{33}$

Catalysts made of noble metals ($\mathrm{Ru}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Rh}$ and Pd) and transition metals (Fe, Mo and Co) have been extensively studied in the NRR process. ${ }^{34}$ Rational design of electrocatalysts with specific active sites or facets has been successfully applied to limit the competitive HER while promoting NRR activity and selectivity. ${ }^{35,36}$ For instance, Yang et al. reported an improved catalytic activity towards the NRR with an increased concentration of the (110) facet of molybdenum nanofilms. ${ }^{37}$ Compared to commercial Mo foil, a one hundred-fold enhancement in catalytic activity was obtained at a low applied potential, with a maximum NH_{3} formation rate of $3.09 \times 10^{-11} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ and an FE of 0.72% obtained in $10 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$ electrolyte at $-0.49 \mathrm{~V} v s$. RHE and 0.29 V vs. RHE, respectively. The enhanced activity was attributed to both the surface morphology and the orientation of the exposed crystal facets. According to previous DFT studies, the adsorption energies of nitrogen and hydrogen on the $\mathrm{Mo}(110)$ facet are -1.1 eV and -0.7 eV , respectively, suggesting that the $* \mathrm{~N}$ atoms would bind more strongly than $* \mathrm{H}$ atoms and would likely be reduced to NH_{3} instead of $\mathrm{H}_{2}{ }^{25}$

Fig 6. (a) Relation between the Faradaic efficiencies and potentials for different Cu morphologies (sphere, cube and octahedra). Reproduced from Ref. ${ }^{27}$ with permission from the American Chemical Society. (b) Relation between the

Faradaic efficiencies and potentials with the exposure of different Au facets. Reproduced from Ref. ${ }^{28}$ with permission from Wiley. (c) Particle size effect during catalytic CO_{2} electroreduction. The Faradaic current densities at -1.1 and -1.0 V vs. RHE are plotted against the size of the Cu NP catalysts, and the inset shows the population (relative ratio) of surface atoms with a specific coordination number (CN) as a function of particle diameter. Reproduced from Ref. ${ }^{29}$ with permission from the American Chemical Society. (d) Simulation results of the CO_{2} concentration distribution based on diffusion equations. The red arrows show the reactant flux towards the NPs. The colour scale shows the concentration of CO_{2} at a given distance from the NPs as a percentage of its value in the bulk of the electrolyte. A diffusion layer thickness of 100 nm was assumed. (e) Faradaic selectivity during the electroreduction of CO_{2} at -1.1 V vs. RHE with a Cu interparticle distance of 4.7 nm . Reproduced from Ref. ${ }^{32}$ with permission from the American Chemical Society.

2.4.4 Single site engineering

One of the main challenges of bulk metallic or metal-oxide/sulfide catalyst is the large distribution of accessible sites that may result to different favored reaction products and decreased selectivities. Presenting a much smaller distribution of active sites, single atom catalysts (SACs), represent an interesting strategy to increase the selectivity via a closer control of the active site. In the context of $\mathrm{CO}_{2} \mathrm{RR}$ and NRR, SACs have been demonstrated as highly efficient to inhibit HER while promoting the targeted reactions. ${ }^{80-83}$ Liu et al. established a general two-step approach to construct model SACs with precise structures (Fig. 7a). ${ }^{84}$ This involves building well-defined molecular single-atom catalytic centres and linking them to a conductive carbon nanotube. The single-Ni-atom catalyst exhibited high $\mathrm{CO}_{2} \mathrm{RR}$ activity, with a CO_{2}-to- CO faradaic efficiency of 99% and turnover frequency (TOF) of $100179 \mathrm{~h}^{-1}$ at a current density of $32.3 \mathrm{~mA} \mathrm{~cm}^{-2}$ and overpotential of 600 mV . Pan and coauthors reported the design of SACs with atomically dispersed Co sites anchored on polymer-derived hollow N -doped porous carbon spheres with a large surface area, abundant N coordination sites and high electrical conductivity. ${ }^{85}$ As shown in Fig. 7b, the single-atom $\mathrm{Co}-\mathrm{N}_{5}$ site is also the dominant active center for CO_{2} activation, and the rapid formation of $* \mathrm{COOH}$ is a key reaction intermediate compared with the coupling of protons followed by the fast desorption of CO.

SACs have also been applied to the NRR. Calculating free energies shows that all metal surfaces except for Pt (111) and Ir (111) exhibit positive relative energies on the top site for $* \mathrm{H}$, which indicates that $* \mathrm{H}$ prefers bridge or hollow sites to top sites whereas ${ }^{*} \mathrm{H}$ is destabilized on the top site (Fig. 7c). ${ }^{86}$ Thus, the suppressed proton adsorption originates from the availability of only the top adsorption sites on SACs, highlighting the fundamental role of the atomic ensemble effect in suppressing HER. Control of the conformation of the adsorbed molecules on single metal sites is an effective approach to purposefully improve the catalytic properties of SACs. Chen et al. performed DFT calculations to investigate the adsorption of N_{2} on single metal sites. ${ }^{87}$ In the case of a vertical end-on configuration followed by the formation of an oblique end-on *NNH molecule, the corresponding NRR process is energetically favourable (Fig. 7d). By targeting the two molecular configurations, single Ag sites with Ag- N_{4} coordination were identified as the model catalyst for NRR. Experimentally, SACs composed of single Ag sites were prepared on N -doped carbon black $(\mathrm{SA}-\mathrm{Ag} / \mathrm{NC})$ and demonstrated a high NH_{3} yield rate $(270.9 \mu \mathrm{~g}$
$\mathrm{h}^{-1} \mathrm{mg}_{\text {cat }}{ }^{-1}$ or $69.4 \mathrm{mg} \mathrm{h}^{-1} \mathrm{mgAg}^{-1}$) and a desirable Faradaic efficiency (21.9\%) in HCl aqueous solution under ambient conditions.

Fig 7. (a) TOF of Ni-CNT-CC compared with the TOFs of other state-of-the-art CO_{2}-to-CO reduction catalysts. Reproduced from Ref. ${ }^{84}$ with permission from Wiley. (b) Comparison of the $\mathrm{FE}_{\mathrm{CO}}$ and $\mathrm{FE}_{\mathrm{H} 2}$ of $\mathrm{Co}-\mathrm{N}_{5} / \mathrm{HNPCSs}$ and CoPc . Reproduced from Ref..85 with permission from the American Chemical Society. (c) Calculated $\Delta \mathrm{G}\left({ }^{*} \mathrm{H}\right)$ and $\Delta \mathrm{G}\left({ }^{*} \mathrm{~N}_{2}\right)$ on SACs that satisfy $\Delta \mathrm{GPDS} \leq 1.0 \mathrm{eV}$. The dashed line indicates $\Delta \mathrm{G}\left({ }^{*} \mathrm{H}\right)=\Delta \mathrm{G}\left({ }^{*} \mathrm{~N}_{2}\right)$. SACs in the $\Delta \mathrm{G}\left({ }^{*} \mathrm{H}\right)>\Delta \mathrm{G}\left({ }^{*} \mathrm{~N}_{2}\right)$ region (${ }^{*} \mathrm{~N}_{2}$ dominant region), under the dashed line, correspond to N_{2} adsorption being more favourable than "H formation at 0 V vs. RHE. Reproduced from Ref. ${ }^{86}$ with permission from the American Chemical Society. (d) Calculated FEs and yield rates of NH_{3} over SA-Ag/NC. Reproduced from Ref. ${ }^{87}$ with permission from the American Chemical Society.

2.5 The electrolyte: an active component to drive reactivity and enhance selectivity

2.5.1 Adjusting the local pH at the electrode/electrolyte interface

The pH value of the electrolyte greatly influences the equilibrium potential of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR , as highlighted in the partial Pourbaix diagram for the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR provided in Fig. 8a and Fig. 8b. ${ }^{88-90}{ }^{91}$ In addition to the thermodynamic cell potential, the cathodic and anodic overpotential is also heavily affected by pH , and highly alkaline media has often been applied to reduce cell voltage. A high local pH typically suppresses HER formation, thus favouring multicarbon products for the $\mathrm{CO}_{2} \mathrm{RR}$ and ammonia selection for the NRR. ${ }^{22,93}$ The groups of Sinton and Sargent have achieved remarkable results for the $\mathrm{CO}_{2} \mathrm{RR}$ in highly alkaline media; using 7 $\mathrm{M} \mathrm{KOH}(\mathrm{pH} \approx 15)$ they achieved a $1.3 \mathrm{~A} \mathrm{~cm}^{-2}$ partial current density for ethylene in a flow cell. ${ }^{94}$ Engineering of the triple-phase interface was key to these results and will be discussed further in Section 5. Unfortunately for CO_{2} electrolysis, the use of alkaline electrolyte is complicated by the fatal exergonic formation of carbonate,
which is detrimental to both energy and carbon efficiency. ${ }^{95}$ Neutral bicarbonate electrolytes have been applied to reduce electrolyte consumption and to buffer the local pH , although at high currents $\mathrm{CO}_{3}{ }^{2-}$ is still formed from CO_{2} and electrogenerated OH^{-}. Several studies have explored the dependence of product distribution on local pH at the electrode/electrolyte interface, as well as the concentration and buffer capability of the electrolyte. In that line, a fine tuning of the product selectivity for CORR on Cu electrodes was achieved via the modulation of local pH upon variation of the electrolyte buffer capacity, CO_{2} pressure, and current density. ${ }^{96}$ Varela et al. proposed that electrolytes with a high buffer capacity could facilitate the transfer of coupled electrons/protons, thus being beneficial for the evolution of hydrogen. ${ }^{97}$ In comparison, they found electrolytes with a low buffer capacity could suppress the formation of H_{2} owing to the low concentration of protons near the electrode surface, favouring selectivity towards the formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ (Fig. 8c). Conversely, applying a higher current density can also lead to a higher local pH . This is due to a high consumption rate of local protons compared to the rate of mass transport of protons from the bulk electrolyte. Huang et al. modelled an electrode surface and found that even in highly acidic electrolytes (pH 1), local neutrality and alkalinity could be created above $200 \mathrm{~mA} / \mathrm{cm}^{2} .{ }^{98}$ They required at least $400 \mathrm{~mA} / \mathrm{cm}^{2}$ to produce multicarbon products. This improved carbon efficiency considerably, although energy efficiency remains problematic. Although a higher CO_{2} pressure could result in a lower local pH at a constant electrolyte concentration, it favoured ethylene formation by increasing the local * CO concentration and the corresponding *CO surface coverage. ${ }^{99}$ Recently, Chen et al. reported that adjusting the thickness of a highly porous Au film allows controlling the mass transfer resistance and increasing the local pH at the electrolyte/electrode interface of CO_{2} reduction, which results in the promotion of the $\mathrm{CO}_{2} \mathrm{RR}$ while inhibiting the HER. ${ }^{100}$

For the nitrogen reduction reaction, Xu et al. summarized the dependence of the formation of nitrogenreduction intermediates on pH for aqueous media. ${ }^{101}$ Due to the large overpotentials needed to activate N_{2} and the low solubility of N_{2} in aqueous electrolytes, when the applied overpotential is sufficient to trigger the electrochemical synthesis of NH_{3}, the reaction at the active sites quickly becomes controlled by the mass transport of N_{2} molecules. Consequently, the presence of protons near the electrode surface leads to the uncontrolled production of hydrogen. As illustrated in Fig. 8d, Wang et al. gauged the NRR performance of commercial Pd/C in electrolytes with different pH values. Their observations revealed that the effective suppression of the HER activity in the neutral electrolyte was attributed to a higher barrier for mass and charge transfer. ${ }^{102,103}$

Fig 8. (a) Partial Pourbaix diagram for CO_{2} reduction in aqueous solution that describes the relationship between the equilibrium potential of the associated reaction and pH , which is plotted based on thermodynamic data. Reproduced from Ref. ${ }^{88}$ with permission from the Royal Society of Chemistry. (b) Partial Pourbaix diagram for the $\mathrm{N}_{2}-\mathrm{H}_{2} \mathrm{O}$ system. Solid lines correspond to N_{2} reduction to $\mathrm{NH}_{4}{ }^{+}$or $\mathrm{NH}_{3}(\mathrm{red})$ and N_{2} oxidation to $\mathrm{NO}_{3}{ }^{-}$(blue). Dotted lines a and b straddle the region of water reduction to H_{2} and oxidation to O_{2}, respectively. Reproduced from Ref. ${ }^{89}$ with permission from AAAS. (c) Formation rates of gas products as a function of applied electrode potentials in CO_{2} saturated electrolytes with different buffer capacities. Reproduced from Ref. ${ }^{97}$ with permission from Elsevier. (d) NH_{3} yield rate and Faradaic efficiency of Pd / C processed in N_{2}-saturated electrolytes with different pH values. Reproduced from Ref. ${ }^{102}$ with permission from AAAS.

2.5.2 Optimizing the components of the electrolyte: alkali metal cation effects

Bicarbonate or carbonate are the most investigated electrolyte salts employed for the $\mathrm{CO}_{2} \mathrm{RR}$ as they provide a near-neutral pH but most importantly allow to maintain a stable and high dissolved CO_{2} concentration upon operation. ${ }^{104,105}$ Hence, while the anions are rarely varied in electrochemical studies, a wide range of studies have investigated the variation of the alkali cations. In $\mathrm{CO}_{2} \mathrm{RR}$, while the influence of alkali cations on product selectivity and catalyst efficiency are commonly accepted, ${ }^{106}$ the origin of this effect is still largely debated in the literature. The influence of the used alkali metal cations on the $\mathrm{CO}_{2} \mathrm{RR}$ activity and selectivity is generally attributed to the relatively high population of alkali cations in the outer Helmholtz plane (OHP). Early work from Monteiro et al. proposed that large cations are specifically adsorbed more easily on the catalyst surface because of the fewer coordinated water molecules. ${ }^{107}$ Adsorbed cations can also elevate the potential at the OHP and decrease the local proton concentration, suppressing HER. ${ }^{108}$ Alternatively, it was suggested that the cation size can significantly affect the rate of water hydrolysis by tuning the hydration energy. ${ }^{109}$ For instance, the pKa value
of Li^{+}was calculated to be three times higher than that of Cs^{+}. The hydrated Cs^{+}acts as a buffer, maintaining a locally low pH near the electrode and increasing the local CO_{2} concentration compared to Li^{+}by 28 times (Fig. 9a). To gain more insight into the role of cations in electrocatalysis, Ringe et al. developed a combined ab initio/continuum model of cation and electric double layer field effects based on a continuum modified PoissonBoltzmann approach (Fig. 9b). ${ }^{110}$ By applying a single set of cation sizes derived from experimental data, the model showed quantitative agreement with the experiments for the catalyst system on both Ag and Cu . The model allows us to show that the surface charge density and the associated electric field are primarily altered by repulsive interactions amongst hydrated cations in the Helmholtz layer. The use of high-valent cations with a small hydration radius also increases the potential of zero charges or capacitance, which maximizes the surface charge density and the corresponding interfacial electric fields. ${ }^{111}$ Bell's group provided insights regarding the beneficial effect of cations, particularly at relatively low overpotentials, for which the reaction rate does not perturb the local $\mathrm{pH} .{ }^{112}$ Notably, the hydrogen and CH_{4} partial currents remained steady, while formate, $\mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ formation rates increased when using large alkali cations. The cation size-independent production of H_{2} and CH_{4} was attributed to the zero dipole moment of ${ }^{*} \mathrm{H}$ and ${ }^{*} \mathrm{CHO}$, which are the corresponding reaction intermediates of the reactions (Fig. 9c). ${ }^{113}$

Alkali metal cations have also been used in recent work to promote the $\mathrm{CO}_{2} \mathrm{RR}$ in strongly acidic medium. A key advantage to operating at a low pH is the improved carbon utilisation efficiency, which is limited in neutral and alkaline media due to the formation of carbonate. Sargent and co-workers utilised a cation-augmenting layer to sustain a high K^{+}concentration at the copper catalyst surface. ${ }^{98}$ They achieved 61% faradaic efficiency for $\mathrm{CO}_{2} \mathrm{R}$ products and 40% for C_{2+} products at $1.2 \mathrm{~A} / \mathrm{cm}^{2}$, and by lowering the CO_{2} flow they reached a single pass conversion efficiency of 77%. Gu et al. explored the effect of alkali cations on the $\mathrm{CO}_{2} \mathrm{RR}$ in acid with tin oxide, gold and copper catalysts, achieving 90% faradaic efficiencies for formic acid and CO. ${ }^{114}$ Using a simulation based on the Poisson-Nernst-Planck (PNP) model, they predicted that the origin of such striking effects was the modulation of electric fields, which inhibited the migration of hydrononium ions.

In the context of NRR, Hao et al. identified that the combination of bismuth and potassium cations contributes to the NRR process by simultaneously enhancing the selectivity and activity. ${ }^{115}$ Potassium cations lower the freeenergy change $(\Delta \mathrm{G})$ required by the potential-determining step (PDS) and regulate the proton diffusion process to make the reaction more selective for the reduction of nitrogen (Fig. 9d). As a result, the $\mathrm{Bi}-\mathrm{K}^{+}$pair can promote the NRR to achieve a record-high Faradaic efficiency and ammonia yield at 66% and $200 \mathrm{mM} \mathrm{NH}_{3} \mathrm{~g}^{-1} \mathrm{~h}^{-1}$ in aqueous solutions and under ambient conditions.

Fig 9. (a) Effect of cation hydrolysis on the electrochemical reduction of CO_{2} over Ag. Distribution of pH and CO_{2} concentration in the boundary layer. Hydrated Cs^{+}buffers the cathode to maintain the pH close to 7 and to increase the CO_{2} concentration. Reproduced from Ref. ${ }^{109}$ with permission from the American Chemical Society. (b) Illustration of the origin of cation effects in field-driven electrocatalysis. Repulsive interactions between hydrated cations at the outer Helmholtz plane reduce the local concentration of cations, the surface charge density (depicted by the red-coloured region) and the electric double layer field. The diffuse layer that is explicitly modelled by the size-modified Poisson-Boltzmann (MPB) model is depicted, as well as the Helmholtz gap capacitance region and the interfacial ion diameter. Reproduced from Ref. ${ }^{110}$ with permission from the Royal Society of Chemistry. (c) Average current densities obtained during bulk electrolysis as a function of metal cations at different potentials. Reproduced from Ref. ${ }^{113}$ with permission from the American Chemical Society. (d) Without the presence of K^{+}cations, protons can be readily transferred to the surface, and the HER will dominate. Once K^{+}hinders proton transfer to the catalyst surfaces, nitrogen will be adsorbed preferentially, and the NRR is promoted. Reproduced from Ref. ${ }^{115}$ with permission from Nature Publishing Group.

2.5.3 The search for novel electrolytes: ionic liquids and non-aqueous electrolytes

Ionic liquids (ILs), which are defined as salts that remain liquid below $100^{\circ} \mathrm{C}$, have been proven to be a promising new class of environmentally benign solvents. ${ }^{116}$ By tuning the molecular structure and polarity of the IL, the CO_{2} and N_{2} absorption capacity and the ability to stabilize charged CO_{2} and N_{2} species can be tuned and optimized. ILs also possess several advantages, such as wide electrochemical windows, thermal and chemical stability, negligible volatility and electron transfer mediation for redox catalysis, which make them an interesting
alternative to promote the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR. ${ }^{117}$ As they are nonaqueous by nature, ILs allow control of the aqueous content to an optimum level to provide protons for hydrocarbon formation while suppressing the HER. ${ }^{118-122}$

ILs have been extensively investigated for the $\mathrm{CO}_{2} \mathrm{RR}$ because the cations of ILs can form a complex with CO_{2} and accelerate its transportation. Rosen et al. reported the use of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) as an IL electrolyte for the electrochemical conversion of CO_{2} to CO on silver (Fig. 10a). ${ }^{123}$ The IL system lowers the energy of the ${ }^{*} \mathrm{CO}_{2}$ intermediate via the formation of a complex intermediate, which lowers the energy associated with the initial step of the reduction reaction. ${ }^{124}$ The formation of CO occured at very low onset overpotential, and the IL system demonstrated sustained production of CO for 7 hours with a $\mathrm{FE}_{\mathrm{CO}}$ of more than 96%. ILs have also been applied with transition metal dichalcogenides, which are known to be more prone to promote the HER over other reduction reactions. Remarkably, Asadi et al. exfoliated WSe_{2} nanoflakes to perform the electroreduction of CO_{2} to CO using a 50 vol. $\%$ [Emim] $\mathrm{BF}_{4} / \mathrm{H}_{2} \mathrm{O}$ solution. ${ }^{125}$ The current density, FE, and TOF in producing CO were all superior at lower overpotentials, suggesting a high selectivity for the $\mathrm{CO}_{2} \mathrm{RR}$ (Fig. 10b). Copper selenide nanocatalysts have been identified to convert CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at low overpotentials in a $[\mathrm{Bmim}] \mathrm{PF}_{6} /$ acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ mixed electrolyte. ${ }^{126}$ In addition, in a $[\mathrm{Bmim}] \mathrm{BF}_{4}-\mathrm{H}_{2} \mathrm{O}$ electrolyte, MoTe_{2} could also be used as a catalyst for CO_{2} reduction to CH_{4} with a high FE of 83% at a relatively low overpotential. ${ }^{127}$ Atifi et al. demonstrated that protic ionic liquids (PILs) derived from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) effectively promote the electrochemical reduction of CO_{2} to formate $\left(\mathrm{HCOO}^{-}\right)$with high selectivity (Fig. 10c). ${ }^{128}$ The use of PILs composed of the conjugate acid of DBU, [DBU$\mathrm{H}]^{+}$, efficiently catalysed the reduction of CO_{2} to $\mathrm{HCOO}^{-}\left(\mathrm{FE}_{\mathrm{HCOOH}} \approx 80 \%\right)$ with significant suppression of CO and H_{2} production ($\mathrm{FE}_{\mathrm{CO}}+\mathrm{FE}_{\mathrm{H} 2} \approx 20 \%$) in either acetonitrile or an acetonitrile/ $\mathrm{H}_{2} \mathrm{O}$ mixed electrolyte.

Ionic liquids and nonaqueous electrolytes with high N_{2} solubility under ambient conditions can also increase the local concentration of N_{2} near the catalyst surface by as much as 20 times compared to water on a volumetric basis. ${ }^{129}$ MacFarlane and co-workers reported the use of ionic liquids with high N_{2} solubility for the electroreduction of N_{2} to ammonia at room temperature and atmospheric pressure. ${ }^{130}$ As presented in Fig. 10d, $\mathrm{FE}_{\mathrm{NH}_{3}}$ as high as 60% was achieved in [P6,6,6,14][eFAP]. Ortuño et al. used DFT calculations to explore the nature of N_{2} adsorption on different ions, and found that a stronger interaction accompanied by chargedelocalization will result in stronger adsorption of $\mathrm{N}_{2} .{ }^{131}$ As shown in Fig. 10e, they found that on a Ru surface the presence of ILs reduces the relative electronic energy of the $\mathrm{N}_{2} \mathrm{RR}$ intermediate $\mathrm{N}_{2} \mathrm{H}^{*}$ more significantly than that of the HER intermediate, $\mathrm{H}_{2}{ }^{*}$, lowering the energy by 0.34 eV and 0.11 eV , respectively. Suryanto et al. identified the importance of the IL molar fraction (X_{IL}) on the physicochemical properties of the electrolyte mixture and the NRR performance. ${ }^{132}$ An FE as high as $23.8 \pm 0.8 \%$ with an NH_{3} yield rate of $1.58 \pm 0.05 \times 10^{-}$ ${ }^{11} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$ was achieved for $\mathrm{X}_{\mathrm{IL}}=0.23$ at an optimal potential of $-0.65 \mathrm{~V} v s$. NHE (Fig. 10f). The significant drop in the NRR performance when further increasing $X_{\text {IL }}$ highlights the role of $1 \mathrm{H}, 1 \mathrm{H}, 5 \mathrm{H}$-octafluoropentyl 1,1,2,2-tetrafluoroethylene ether (FPEE) in facilitating the mass transport of N_{2} in the electrolyte. The authors
also claimed that other factors correlating FE and $\mathrm{X}_{\text {IL }}$ could play a role, such as the presence of complex molecular interactions and the different diffusion behaviours of neutral N_{2} molecules and polar $\mathrm{H}_{2} \mathrm{O}$ within the mixed electrolyte system. ${ }^{133}$

Fig 10. (a) Schematic of how the free energy of the system changes during the $\mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ reaction in water, acetonitrile (solid line) or EMIM- BF_{4} (dashed line). Reproduced from Ref. ${ }^{123}$ with permission from AAAS. (b) Overall $\mathrm{FE}_{\mathrm{CO}}$ and $\mathrm{FE}_{\mathrm{H}_{2}}$ at different applied potentials for $\mathrm{WSe}_{2} \mathrm{NFs}$. The error bars represent the standard deviation of four measurements. Reproduced from Ref. ${ }^{125}$ with permission from AAAS. (c) Linear sweep voltammograms were recorded for Bi-based and bare GCEs in MeCN containing 250 mM IL and $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ under the saturation of $\mathrm{Ar}, \mathrm{N}_{2}$, or CO_{2}. Reproduced from Ref. ${ }^{128}$ with permission from the American Chemical Society. (d) Faradaic efficiency for electroreduction of N_{2}-saturated ILs on various electrodes at a constant potential of 0.8 V vs. NHE. Reproduced from Ref. ${ }^{130}$ with permission from the Royal Society of Chemistry. (e) Corresponding reaction energy profiles of such intermediates during the NRR (right) and HER (left) for clean (dashed green line) and IL-decorated (solid purple line) Ru surfaces. Reproduced from Ref. ${ }^{131}$ with permission from the American Chemical Society. (f) Solvent-IL ratio ($\mathrm{X}_{\text {IL }}$) dependence of the NH_{3} yield and FE at -0.65 V vs. NHE. Reproduced from Ref. ${ }^{132}$ with permission from the American Chemical Society.

2.5.4 Solid-state electrolyte designs

Conventional liquid electrolytes used in the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR , such as $\mathrm{KHCO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$, or KOH , mainly have three main purposes: i) to transport ions between the cathode and anode for efficient current flow, $i i$) to provide protons for successive PCET and iii) to solvate liquid products. The mixture of liquid products and ion impurities requires energy- and cost-intensive downstream separation steps to obtain pure products, which complicates the infrastructure for delocalized production. ${ }^{134}$ To tackle this problem, the concept of solid-state electrolytes was proposed, inspired by progress in solid-state electrolytes for batteries. ${ }^{135}$ A solid-state electrolyte is typically placed between ion-exchange membranes with close contact to efficiently transport the generated ions and minimize the ohmic loss of the device. ${ }^{136}$ Remarkably, solid-state electrolytes have been proven to be very
successful for suppressing HER by limiting the flow of protons to the catalyst active sites during the electrochemical CO_{2} RR. ${ }^{137,138}$ The Wang group have reported the continuous electrocatalyic conversion of CO_{2} to pure liquid fuels using two electrode systems with solid electrolytes. ${ }^{139,140}$ They applied a porous solid electrolyte (PSE) layer composed of styrenedivinylbenzene copolymer microspheres with sulfonic acid functional groups for proton conduction. Using a formic-acid-selective bismuth catalyst ($\mathrm{FE}_{\mathrm{HCOOH}} \sim 97 \%$), the electrochemically generated protons and formate anions could combine at the PSL to produce formic acid (Fig. 11a). By directly flowing a carrier gas instead of deionized water through the PSL, they were able to collect product vapours that could be condensed to form the pure product (almost $100 \mathrm{wt} . \%$ formic acid), alongside impressive current density and stability (Fig. 11b).

Diez-Ramírez et al. studied the electrochemical synthesis of ammonia promoted by potassium ions $\left(\mathrm{K}^{+}\right)$on a $\mathrm{Co}_{3} \mathrm{Mo}_{3} \mathrm{~N}-\mathrm{Ag}$ electrocatalyst in a $\mathrm{K}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ solid electrolyte cell (Fig. 11c). ${ }^{141}$ The catalyst exhibited volcanotype behaviour with applied voltage. At high overpotentials, more K^{+}is pumped to the catalyst, and the rate of ammonia formation decreases due to the high surface concentration of potassium ions. The apparent poisoning effect was attributed to the blocking of active sites by K^{+}and the formation of $\mathrm{K}-\mathrm{N}-\mathrm{H}$ poisoning compounds.Lan et al. employed an $\mathrm{H}^{+} / \mathrm{Li}^{+} / \mathrm{NH}_{4}{ }^{+}$mixed conducting Nafion membrane as the electrolyte for the NRR. ${ }^{142}$ The mixed conducting Nafion membrane increased the chemical compatibility of the acidic Nafion membrane with $\mathrm{NH}_{3} . \mathrm{Li}^{+}$ ions reduced NH_{3} formation due to the blocking effect of Li^{+}on the transferred protons, rendering a relatively lower current at a higher applied voltage. Sheets et al. proposed a novel polymer gel approach to convert N_{2} to NH_{3} at mild temperatures $\left(30-60{ }^{\circ} \mathrm{C}\right)$ and pressures (20 psig). ${ }^{143}$ As illustrated in Fig. 11d, the polymer gel electrolyte helped to control the rate of the HER by limiting water transport and boosting N_{2} transport, thus improving the selectivity towards the NRR.

As an alternative to organic electrolytes, metal oxides have also been investigated as solid-state electrolytes for the NRR. ${ }^{144}$ The working principle of solid oxide systems for the reduction of N_{2} is that the anode and cathode are deposited on both sides of the metal oxides, which act as proton conductors, while H_{2} is flowed over the anode for conversion into H^{+}. Protons are transported to the cathode, where the half-cell reaction between N_{2} and H^{+}takes place (Fig. 11e). ${ }^{145}$ Skodra et al. used steam to supply protons to the cathode and $\mathrm{SrCe}_{0.95} \mathrm{Yb}_{0.05} \mathrm{O}_{3}$ as the proton-conducting solid-state electrolyte, with Ru and Pd catalysts as the cathode and anode, respectively. Water vapour is first reduced to O_{2} and H^{+}by electrolysis, and protons are transported to the cathode through the proton conducting disk to react with N_{2} and form NH_{3}. During the whole reaction process, only N_{2} needed to be purified, and NH_{3} was successfully formed in the temperature range of $450-700^{\circ} \mathrm{C}$.

Fig 11. (a) Schematic illustration of the CO_{2} reduction cell with a solid electrolyte. Reproduced from Ref. ${ }^{139}$ with permission from Nature Publishing Group. (b) Electrochemical performance of our all-solid-state $\mathrm{CO}_{2} \mathrm{RR}$ reactor compared with previous literature. Reproduced from Ref. ${ }^{140}$ with permission from Nature Publishing Group. (c) Schematic diagram of the single-chamber K^{+}conducting cell reactor used for the electrochemical promotion of ammonia synthesis. Reproduced from Ref. ${ }^{141}$ with permission from the American Chemical Society. (d) Diagram of the transport of species at the cathode showing the benefit of limiting water transport via the polymer gel electrolyte. Reproduced from Ref. ${ }^{143}$ with permission from the Royal Society of Chemistry. (e) Schematic of solid oxide cells for electrocatalytic N_{2} reduction employing protonconducting electrolytes. Reproduced from Ref. ${ }^{145}$ with permission from Frontiers.

2.6 Three-phase interface engineering

The abundance of protons near the catalyst active sites makes the competing HER in aqueous electrolytes via direct water reduction dominant, resulting in low selectivity and activity of the $\mathrm{CO}_{2} R R$ and NRR. ${ }^{146}$ A mitigation strategy resides in facilitating the accessibility of the catalyst to high concentrations of CO_{2} or N_{2} molecules. While protons $\left(\mathrm{H}^{+}\right)$are readily available in aqueous solutions via water ionization, the supply of CO_{2} and N_{2} molecules to the catalyst surface is limited by their low concentration and slow diffusibility. In saturated aqueous
electrolytes, the solubility of CO_{2} in $\mathrm{H}_{2} \mathrm{O}$ is $3.3 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ at 298 K and 1 atm pressure, whereas the value for N_{2} in $\mathrm{H}_{2} \mathrm{O}$ remains as low as $6.8 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} .{ }^{147}$ For comparison, the concentration of protons in neutral electrolyte is typically 2.7 -fold and 132 -fold higher than the concentrations of CO_{2} and N_{2}, respectively. Raciti et al. confirmed that the concentration of CO_{2} molecules on the catalyst surface can even be completely depleted to zero under a strong reaction driving force. ${ }^{148}$ Such a limitation constitutes a significant hurdle.

One approach to tackle this challenge consists of the realization of an efficient three-phase interface between gaseous CO_{2}, the liquid electrolyte and the solid catalyst. Under this condition, highly concentrated gas-phase CO_{2} molecules can be delivered through a porous gas diffusion layer (GDL) to the catalyst surface directly. With higher CO_{2} and lower H^{+}surface concentrations, the HER can be significantly suppressed, and the $\mathrm{CO}_{2} \mathrm{RR}$ performance can be improved. The properties of the GDL that supports the catalyst layer can affect CO_{2} and water transport heavily, as recently reviewed by Berlinguette and co-workers. ${ }^{149}$ Thinner GDE/catalyst layers shorten the CO_{2} diffusion distance, raising the relative CO_{2} concentration; however, excessively high concentrations can decrease multicarbon product formation by competing with intermediates such as CO for binding sites. ${ }^{150}$ The wettability of the electrode can be modulated with pore size and hydrophobicity so that the pores do not become flooded with electrolyte, impeding CO_{2} diffusion. ${ }^{151}$

Fine-tuning the local microenvironment near the catalyst surface has shown great enhancements in activity and product selectivity in the $\mathrm{CO}_{2} \mathrm{RR}$. Wakerley et al. demonstrated a bioinspired strategy with a hydrophobic coating of long-chain alkanethiols on dendritic Cu , which leads to a drastic increase in CO_{2} reduction selectivity (Fig. 12a). ${ }^{24} \mathrm{~A}$ "plastron effect" was proposed based on the hydrophobicity of animal fur or skin. As a gaseous layer forms at the surface of the electrode, it increases the local CO_{2} concentration and enables high selectivity for C_{2} products on Cu . This study led to the identification of the role of hydrophobicity and the formation of gaseous voids as effective levers to orient the reaction pathway towards the formation of multicarbon products, opening directions for future electrode designs. More recently, Xing et al. showed that a hydrophobic microenvironment can significantly enhance CO_{2} electrolysis by facilitating reactant diffusion (Fig. 12b). ${ }^{152}$ Using commercial copper nanoparticles dispersed with hydrophobic polytetrafluoroethylene (PTFE) nanoparticles, they reported improved activity and Faradaic efficiency for CO_{2} reduction with a partial current density $>250 \mathrm{~mA} \mathrm{~cm}^{-2}$ and a single-pass conversion of 14% at moderate potentials. Importantly, this performance was approximately twice as large as that of regular electrodes without added PTFE. Similar findings were also observed from a Bi-based catalyst modified with PTFE nanoparticles in the catalyst layer to demonstrate a partial current density of 677 $\mathrm{mA} \mathrm{cm}{ }^{-2}$ for formate and 35% single-pass CO_{2} conversion at -0.7 V vs. RHE (Fig. 12c). Pham et al. compared various ionomeric binders on a Cu catalyst, and achieved a 77% faradaic efficiency and $600 \mathrm{~mA} \mathrm{~cm}^{-2}$ partial current density for C_{2+} products at -0.76 V vs RHE using a fluorinated ethylene propylene (FEP) binder. ${ }^{153}$ They attributed these results to the hydrophobic properties of FEP. The Sinton and Sargent groups have also done notable work on modulating the three-phase interface in continuous flow and membrane electrode assembly (MEA) electrolyzers, enabling high current densities (e.g. $>1 \mathrm{~A} \mathrm{~cm}^{-2}$) to be achieved. ${ }^{94,138}$ For example, they
presented a catalyst:ionomer bulk heterojunction (CIBH) architecture, which had both hydrophilic and hydrophobic functionalities. By having different domains that favoured gas and ion transport routes, they were able to decouple gas, ion and electron transport, extending the reaction interface from the submicrometer to the several micrometer range. ${ }^{51}$ These examples illustrate that moderate hydrophobicity of the catalyst layer can establish a microenvironment with a balance between gaseous CO_{2} and liquid electrolytes inside the catalyst layer. Such microenvironments - equivalent to microreactors - reduce the thickness of the diffusion layer, accelerate CO_{2} mass transport and link highly active reaction zones at the interfaces between the three phases involved in the reaction. ${ }^{154}$ The triple-phase interface can also be tuned by applying ionomers to control pH and $\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{O}$ concentrations. Bell and co-workers postulated that anion-exchange ionomers (e.g. sustanion) increase CO_{2} solubility, cation-exchange ionomers (e.g. nafion) increase local pH by trapping OH^{-}ions, and both types increase water concentration. ${ }^{155}$ By optimizing a bilayer ionomer coating and coupling to pulsed electrolysis, they achieved 90% faradaic efficiency for C_{2+} products and just 4% for H_{2}.

When applying large potentials at the electrodes, the kinetically facile HER becomes preferable to the reduction of N_{2} due to the relatively low energy barrier associated with the reaction. It was suggested that the HER should always dominate at normal proton concentrations near the metal electrode surface. However, when few protons or electrons are provided, the NRR may preferentially occur, as recently observed experimentally. Designing a triple-phase interface for NRR can increase the local N_{2} concentration and improve $* \mathrm{~N}_{2}$ adsorption, whilst limiting the availability of protons by reducing contact with the electrolyte. ${ }^{156,157}$ Using this strategy, Zhang et al. realized triple-phase electrolysis via in situ fabrication of Au nanoparticles located on hydrophobic carbon fiber paper (Au/CFP) (Fig. 12d). ${ }^{158}$ The hydrophobic carbon fibres facilitated the formation of three-phase contact points (TPCPs) for N_{2}, the liquid electrolyte and the Au NPs. Chen et al. improved the three-phase reactions by using hydrophobic layers on both sides of the catalyst and reported an improved ammonia formation rate of 1.06 $\times 10^{-11} \mathrm{~mol} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ using a $30 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$-CNT electrocatalyst (Fig. 12e). ${ }^{159}$ The ammonia formation rate and NH_{3} Faradaic selectivity were improved by 158% and 571%, respectively, compared to the traditional configuration based on the two-phase interface. According to the authors, excessive suppression of the HER is not, however, beneficial to NRR activity, although it can lead to higher Faradic efficiency (Fig. 12f). A sharp decrease in the local concentration of protons does not benefit the NRR process, as protons are necessary for the successive PCET steps associated with the formation of ammonia. These investigations point out that although the release of hydrogen is a competitive reaction, protons are paradoxically essential to increase the ammonia yield. ${ }^{160}$

Fig 12. (a) Operation of the hydrophobic dendrite, illustrating the enhanced CO_{2} mass transport from the triple-phase boundary between the electrolyte, the electrode and gaseous CO_{2} and the resultant formation of key products on the surface. Reproduced from Ref. ${ }^{24}$ with permission from Nature Publishing Group. (b) Faradaic efficiencies for the $\mathrm{CO}_{2} \mathrm{RR}$ on the two electrodes (dash: AvCarb MGL370 $+\mathrm{Cu} / \mathrm{C}$; solid: AvCarb GDS2230 $+\mathrm{Cu} / \mathrm{C}$) at $-1.0 \mathrm{~V} v$ s. RHE with various CO_{2} flow rates. Reproduced from Ref. ${ }^{152}$ with permission from Nature Publishing Group. (c) Schematic illustration of CO_{2} mass transport inside the catalyst layer with added PTFE, including gas-phase diffusion (solid red arrows) and aqueous-phase diffusion (dashed blue arrows). The dashed rectangles indicate catalyst areas that are only exposed to the electrolyte, exposed to both electrolyte and gaseous CO_{2}, and only exposed to gaseous CO_{2}. Reproduced from Ref. ${ }^{161}$ with permission from the American Chemical Society. (d) Schematic illumination of three-phase contact for N_{2} (gas), the electrolyte (liquid), and the catalyst (solid) at the hydrophobic interface. Reproduced from Ref. ${ }^{158}$ with permission from Wiley. (e) Schematic view of the three-phase reactor for electrochemical ammonia synthesis. Reproduced from Ref. ${ }^{159}$ with permission from the American Chemical Society. (f) NRR catalytic mechanism of $\mathrm{Mo}_{2} \mathrm{C} / \mathrm{C}$ under proton-suppressed and proton-enriched conditions. Reproduced from Ref. ${ }^{160}$ with permission from Wiley.

2.7 Conclusions and Perspectives

The industrial development of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR is currently plagued by low Faradaic and energy efficiencies. The successive PCET steps associated with the corresponding reaction intermediates increase the complexity and complicate the search for an ideal catalyst. The simplicity of the HER mechanism and the abundant presence of
protons in traditional electrolytes make the production of hydrogen a competitive and parasitic reaction that consumes a significant amount of electrons to the detriment of the fixation of CO_{2} and N_{2}. A central approach to alleviating this bottleneck is to minimize the side reaction of hydrogen evolution. Two main strategies have shown promise but still require further investigation; they involve a) favouring the thermodynamics of the desired reaction and b) adjusting kinetics that favour the desired pathways to the detriment of the HER.

Controlling the reaction thermodynamics.

Improved comprehension of the reaction mechanism has recently enabled fast progress in the design of materials and the corresponding active sites with improved selectivity. This approach has also been used to reduce the energy barrier of the targeted reaction to a lower value compared to that of the HER. For instance, theoretical studies have suggested that step sites may very well dominate $\mathrm{CO}_{2} \mathrm{RR}$ and NRR activity, although experimental validation of this remains a challenge. However, the catalyst surface has been shown to reconstruct under reaction conditions. This calls for precise in situ observations of the formation of undercoordinated defects or step sites during the reaction to understand the mechanism for HER inhibition during the reaction under dynamic conditions. The development of operando characterization techniques to probe the active sites together with improved numerical predictions - in particular under realistic environmental conditions - will allow further improvements in the selectivity of the catalyst. The fields will also benefit from the development of isotopic experiments using ${ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$. In particular, the use of D^{+}could advantageously be used to determine the role of protons during electrochemical processes.

Controlling the reaction kinetics.

Based on the mechanism of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR, limiting the accessibility of protons from the electrolyte and electrons over the surface of the catalyst has been found to effectively inhibit the kinetically preferred HER, eventually leading to enhanced $\mathrm{CO}_{2} R R$ and NRR selectivity. Surprisingly, excessively restricting the accessibility of protons and electrons may hinder the whole conversion efficiency of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR to some degree. The balance between selectivity and conversion efficiency therefore necessitates further clarification in future studies. This will be achieved by controlling the local pH at the catalyst surface by tuning the surface chemistry and triple phase interface, modulating the nanostructure, or via the use of nonaqueous electrolytes.

Future challenges and opportunities.

From the viewpoint of the catalyst and the reaction products, cathodic degradation and the inactivation of reaction sites are responsible for the rapid loss in activity. As reactions proceed, undesirable intermediates or poisonous byproducts preferably deposit on the catalyst surface and affect the catalysis process. This phenomenon may decrease the effective area of the electrocatalyst, accelerate cathodic degradation and orient the reaction towards the formation of hydrogen. The demonstration of catalysts with ultralong stability of >5000 hours remains a milestone to validate the industrial potential of the $\mathrm{CO}_{2} \mathrm{RR}$ and NRR. Combining experiments and theoretical research holds potential for guiding the design of both catalysts and electrolyzers for CO_{2} RR and NRR. From
this perspective, machine learning will help rapid screening of catalysts with high selectivity based on massive data in the silico database by focusing on near-optimal bond energy with adsorbates, such as $* \mathrm{CO}$ and ${ }^{*} \mathrm{~N}_{2} \mathrm{H}$.

Overall, this review has presented and discussed the most important developments for suppressing the HER and improving product selectivity during the fixation of CO_{2} and N_{2}. Future developments in the field will emphasize combining efforts to enhance catalyst selectivity while controlling the mass transport of reactants and protons. From this perspective, rapid progress in the design of electrolyzers using new solid electrolytes and in the control of interfaces at the active sites should make it possible to achieve industry-relevant performances, as recently reported in several contributions. ${ }^{140,162}$

2.8 References

1 Li , X. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO_{2} reduction. J. Am. Chem. Soc. 139, 14889-14892 (2017).

2 Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598-600 (2009).
3 Wan, Y., Xu, J. \& Lv, R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69-90 (2019).
4 Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490-500 (2018).
5 Zhang, X., Ward, B. B. \& Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308-5351 (2020).

6 Aresta, M., Dibenedetto, A. \& Angelini, A. Catalysis for the valorization of exhaust carbon: from CO_{2} to chemicals, materials, and fuels. Technological use of CO_{2}. Chem. Rev. 114, 1709-1742 (2014).
7 Guo, X. et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709-5721 (2020).
8 Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355 (2017).

9 Liu, K. H. et al. Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog. Mater. Sci. 92, 64-111 (2018).

10 Yang, W., Dastafkan, K., Jia, C. \& Zhao, C. Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions. Adv. Mater. Technol. 3, 1700377 (2018).
11 Tackett, B. M., Sheng, W. \& Chen, J. G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1, 253-263 (2017).
$12 \mathrm{Du}, \mathrm{Y}$. et al. Regulating surface state of WO_{3} nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N_{2} fixation. Nano Research, 1-7 (2020).

13 Zhang, S., Fan, Q., Xia, R. \& Meyer, T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255-264 (2020).
14 Guo, W., Zhang, K., Liang, Z., Zou, R. \& Xu, Q. Electrochemical nitrogen fixation and utilization: theories,
advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658-5716 (2019).
Ren, Y. et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy \& Environmental Science 14, 1176-1193, doi:10.1039/D0EE03596C (2021).

16 Deng, B., Huang, M., Zhao, X., Mou, S. \& Dong, F. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catalysis 12, 331-362, doi:10.1021/acscatal.1c03501 (2022).

17 Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nature Sustainability, doi:10.1038/s41893-022-00879-8 (2022).
18 Wen, G. et al. Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials 12, 2103289, doi:https://doi.org/10.1002/aenm. 202103289 (2022).
19 Deng, J., Iñiguez, J. A. \& Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2, 846-856 (2018).

20 Chen, K. et al. Water-dispersible CsPbBr_{3} perovskite nanocrystals with ultra-stability and its application in electrochemical CO_{2} reduction. Nano-Micro Lett. 13, 1-13 (2021).
21 Qi, K. et al. Enhancing the CO_{2}-to-CO conversion from 2D silver nanoprisms via superstructure assembly. ACS Nano 15, 7682-7693 (2021).
22 Qiao, J., Liu, Y., Hong, F. \& Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631-675 (2014).
23 Schneider, J., Jia, H., Muckerman, J. T. \& Fujita, E. Thermodynamics and kinetics of $\mathrm{CO}_{2}, \mathrm{CO}$, and H^{+} binding to the metal centre of CO_{2} reduction catalysts. Chem. Soc. Rev. 41, 2036-2051 (2012).

24 Wakerley, D. et al. Bio-inspired hydrophobicity promotes CO_{2} reduction on a Cu surface. Nat. Mater. 18, 1222-1227 (2019).
25 Skulason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N_{2} reduction. Phys. Chem. Chem. Phys. 14, 1235-1245 (2012).
26 Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 1221712314 (2020).

27 De Gregorio, G. L. et al. Facet-dependent selectivity of Cu catalysts in electrochemical CO_{2} reduction at commercially viable current densities. ACS Catal. 10, 4854-4862 (2020).

28 Mezzavilla, S., Horch, S., Stephens, I. E., Seger, B. \& Chorkendorff, I. Structure sensitivity in the electrocatalytic reduction of CO_{2} with Gold catalysts. Angew. Chem. Int. Ed. 58, 3774-3778 (2019).
29 Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. \& Strasser, P. Particle size effects in the catalytic electroreduction of CO_{2} on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978-6986 (2014).
30 Seidel, Y. et al. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 140, 167-184 (2009).

31 Ono, L. K. \& Roldan-Cuenya, B. Effect of interparticle interaction on the low temperature oxidation of

CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catal. Letters 113, 86-94 (2007).
32 Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075-1080 (2016).
33 Mistry, H., Varela, A. S., Kühl, S., Strasser, P. \& Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 1-14 (2016).
34 Cui, X., Tang, C. \& Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

35
Bao, D. et al. Electrochemical reduction of N_{2} under ambient conditions for artificial N_{2} fixation and renewable energy storage using $\mathrm{N}_{2} / \mathrm{NH}_{3}$ cycle. Adv. Mater. 29, 1604799 (2017).

36 Shi, M. et al. Au sub-nanoclusters on TiO_{2} toward highly efficient and selective electrocatalyst for N_{2} conversion to NH_{3} at ambient conditions. Adv. Mater. 29, 1606550 (2017).

37 Yang, D., Chen, T. \& Wang, Z. Electrochemical reduction of aqueous nitrogen $\left(\mathrm{N}_{2}\right)$ at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 5, 18967-18971 (2017).

38 Pan, F. \& Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy \& Environmental Science 13, 2275-2309, doi:10.1039/D0EE00900H (2020).

39 Wagner, A., Sahm, C. D. \& Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nature Catalysis 3, 775-786, doi:10.1038/s41929-020-00512-x (2020).

40 Li, F., MacFarlane, D. R. \& Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10, 6235-6260, doi:10.1039/C7NR09620H (2018).

41 Trogadas, P. \& Coppens, M. O. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 49, 3107-3141, doi:10.1039/c8cs00797g (2020).
42 Huan, T. N. et al. A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing. Biosensors and Bioelectronics 27, 183-186, doi:https://doi.org/10.1016/j.bios.2011.06.011 (2011).

43 Plowman, B. J., Jones, L. A. \& Bhargava, S. K. Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition. Chemical Communications 51, 43314346, doi:10.1039/c4cc06638c (2015).

44 Vesztergom, S. et al. Hydrogen Bubble Templated Metal Foams as Efficient Catalysts of CO_{2} Electroreduction. ChemCatChem 13, 1039-1058, doi:10.1002/cctc. 202001145 (2020).

Du, R. et al. Engineering Self-Supported Noble Metal Foams Toward Electrocatalysis and Beyond. Advanced Energy Materials 10, 1901945, doi:https://doi.org/10.1002/aenm. 201901945 (2020).
46 Dutta, A., Morstein, C. E., Rahaman, M., Cedeño López, A. \& Broekmann, P. Beyond Copper in CO2 Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts. ACS Catalysis 8, 8357-8368, doi:10.1021/acscatal.8b01738 (2018).

Wang, J., Wang, H., Han, Z. \& Han, J. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering 9, 57-63, doi:10.1007/s11705-014-1444-8 (2015).
48 Qin, B., Wang, H., Peng, F., Yu, H. \& Cao, Y. Effect of the surface roughness of copper substrate on threedimensional tin electrode for electrochemical reduction of CO 2 into HCOOH . Journal of CO2 Utilization 21, 219-223, doi:https://doi.org/10.1016/j.jcou.2017.07.012 (2017).
49 Dutta, A. et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 104331, doi:https://doi.org/10.1016/j.nanoen.2019.104331 (2020).

50 Lee, H., Kim, J., Choi, I. \& Ahn, S. H. Nanostructured $\mathrm{Ag} / \mathrm{In} / \mathrm{Cu}$ foam catalyst for electrochemical reduction of CO2 to CO. Electrochimica Acta 323, 133102, doi:https://doi.org/10.1016/j.electacta.2018.11.101 (2019).

51 Zeng, J. et al. Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental 236, 475-482, doi:https://doi.org/10.1016/j.apcatb.2018.05.056 (2018).
52 Rahaman, M., Kiran, K., Zelocualtecatl Montiel, I., Dutta, A. \& Broekmann, P. Suppression of the Hydrogen Evolution Reaction Is the Key: Selective Electrosynthesis of Formate from CO2 over Porous In55Cu45 Catalysts. ACS Applied Materials \& Interfaces 13, 35677-35688, doi:10.1021/acsami.1c07829 (2021).
53 Lamaison, S. et al. High-Current-Density CO2-to-CO Electroreduction on Ag-Alloyed Zn Dendrites at Elevated Pressure. Joule 4, 395-406, doi:10.1016/j.joule.2019.11.014 (2020).

54 Dutta, A., Rahaman, M., Luedi, N. C., Mohos, M. \& Broekmann, P. Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catalysis 6, 3804-3814, doi:10.1021/acscatal.6b00770 (2016).
55 Shin, H.-C. \& Liu, M. Copper Foam Structures with Highly Porous Nanostructured Walls. Chemistry of Materials 16, 5460-5464, doi:10.1021/cm048887b (2004).
56 Zhang, H., Ye, Y., Shen, R., Ru, C. \& Hu, Y. Effect of Bubble Behavior on the Morphology of Foamed Porous Copper Prepared via Electrodeposition. Journal of The Electrochemical Society 160, D441-D445, doi:10.1149/2.019310jes (2013).

57 Rashid, N., Bhat, M. A. \& Ingole, P. P. Dendritic copper microstructured electrodeposits for efficient and selective electrochemical reduction of carbon dioxide into C1 and C2 hydrocarbons. Journal of CO2 Utilization 38, 385-397, doi:https://doi.org/10.1016/j.jcou.2020.02.017 (2020).
58 Malik, K., Bajaj, N. K. \& Verma, A. Effect of catalyst layer on electrochemical reduction of carbon dioxide using different morphologies of copper. Journal of CO2 Utilization 27, 355-365, doi:https://doi.org/10.1016/j.jcou.2018.07.020 (2018).
59 Huan, T. N. et al. A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 56, 4792-4796, doi:10.1002/anie. 201700388 (2017).

Huan, T. N. et al. Low-cost high-efficiency system for solar-driven conversion of CO 2 to hydrocarbons. Proc Natl Acad Sci U S A 116, 9735-9740, doi:10.1073/pnas. 1815412116 (2019).
61 Stojkovikj, S. et al. Electrocatalyst Derived from Waste Cu-Sn Bronze for CO2 Conversion into CO. ACS Applied Materials \& Interfaces 13, 38161-38169, doi:10.1021/acsami.1c05015 (2021).
62 Burdyny, T. et al. Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry. ACS Sustainable Chemistry \& Engineering 5, 4031-4040, doi:10.1021/acssuschemeng.7b00023 (2017).
63 Yoon, Y., Hall, A. S. \& Surendranath, Y. Tuning of Silver Catalyst Mesostructure Promotes Selective Carbon Dioxide Conversion into Fuels. Angewandte Chemie International Edition 55, 15282-15286, doi:https://doi.org/10.1002/anie. 201607942 (2016).
64 Yang, P.-P. et al. Protecting Copper Oxidation State via Intermediate Confinement for Selective CO2 Electroreduction to C2+ Fuels. Journal of the American Chemical Society 142, 6400-6408, doi:10.1021/jacs.0c01699 (2020).

65 Yang, B., Ding, W., Zhang, H. \& Zhang, S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy \& Environmental Science 14, 672687, doi:10.1039/D0EE02263B (2021).
66 Kumar, R. D. et al. Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. Journal of Materials Chemistry A 7, 3190-3196, doi:10.1039/C8TA10562F (2019).
67 Wei, X., Vogel, D., Keller, L., Kriescher, S. \& Wessling, M. Microtubular Gas Diffusion Electrode Based on Ruthenium-Carbon Nanotubes for Ambient Electrochemical Nitrogen Reduction to Ammonia. ChemElectroChem 7, 4679-4684, doi:10.1002/celc. 202001370 (2020).
68 Wang, H. et al. Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. Small 15, 1804769, doi:https://doi.org/10.1002/smll. 201804769 (2019).
69 Wagner, A., Sahm, C. D. \& Reisner, E. Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO_{2} reduction. Nat. Catal. 3, 775-786 (2020).
70 Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102, 679-726 (2002).
71 Li, F. et al. Molecular tuning of CO_{2}-to-ethylene conversion. Nature 577, 509-513 (2020).
72 Kim , C. et al. Insight into electrochemical CO_{2} reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 7, 779-785 (2017).
73 Lim, H. et al. Embedding covalency into metal catalysts for efficient electrochemical conversion of CO_{2}. J. Am. Chem. Soc. 136, 11355-11361 (2014).

74 Zhao, Y., Wang, C., Liu, Y., MacFarlane, D. R. \& Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO_{2} reduction. Adv. Energy Mater. 8, 1801400 (2018). on a copper surface. J. Am. Chem. Soc. 143, 2857-2865 (2021).

Xiao, L. et al. Effects of hydrophobic layer on selective electrochemical nitrogen fixation of selfsupporting nanoporous $\mathrm{Mo}_{4} \mathrm{P}_{3}$ catalyst under ambient conditions. Appl. Catal. B: Environ. 286, 119895 (2021).
77 Huang, Y., Ong, C. W. \& Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11, 3299-3306 (2018).

78 Varela, A. S., Ju, W., Reier, T. \& Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO_{2} electroreduction in the presence of halides. ACS Catal. 6, 2136-2144 (2016).
79 Nam, D. H. et al. Molecular enhancement of heterogeneous CO_{2} reduction. Nat. Mater. 19, 266-276 (2020).

80 Wang, Z., Yu, Z. \& Zhao, J. Computational screening of a single transition metal atom supported on the $\mathrm{C}_{2} \mathrm{~N}$ monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 12835-12844 (2018).

81 Qi, K., Chhowalla, M. \& Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 40, 173-192 (2020).

82 Wang, Y. et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS 2. Nano-Micro Letters 11, 1-13 (2019).
83 Qi, K. et al. Single-atom cobalt array bound to distorted $1 T \mathrm{MoS}_{2}$ with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 1-9 (2019).
84 Liu, S. et al. Elucidating the electrocatalytic CO_{2} reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59, 798-803 (2020).

85 Pan, Y. et al. Design of single-atom Co- N_{5} catalytic site: a robust electrocatalyst for CO_{2} reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218-4221 (2018).

Choi, C. et al. Suppression of hydrogen evolution reaction in electrochemical N_{2} reduction using singleatom catalysts: A computational guideline. ACS Catal. 8, 7517-7525 (2018).
87 Chen, Y. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 14, 6938-6946 (2020).

Wang, G. et al. Electrocatalysis for CO_{2} conversion: from fundamentals to value-added products. Chem. Soc. Rev. (2021).

89 Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science $\mathbf{3 6 0}$ (2018).
90 Hori, Y. in Modern aspects of electrochemistry 89-189 (Springer, 2008).
91 Varela, A. S. et al. pH effects on the selectivity of the electrocatalytic CO_{2} reduction on grapheneembedded Fe-N-C motifs: Bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812-817 (2018).
92 Billy, J. T. \& Co, A. C. Experimental parameters influencing hydrocarbon selectivity during the electrochemical conversion of CO_{2}. ACS Catal. 7, 8467-8479 (2017). 2209-2244 (2009).
94 De Arquer, F. P. G. et al. CO_{2} electrolysis to multicarbon products at activities greater than $1 \mathrm{~A} \mathrm{~cm}^{-2}$. Science 367, 661-666 (2020).
95 Rabinowitz, J. A. \& Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nature Communications 11, 5231, doi:10.1038/s41467-020-19135-8 (2020).
96 Zhang, F. \& Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO_{2} electroreduction in aqueous media. Angew. Chem. Int. Ed. 59, 1674-1681 (2020).
97 Varela, A. S., Kroschel, M., Reier, T. \& Strasser, P. Controlling the selectivity of CO_{2} electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH . Catal. Today 260, 8-13 (2016).

98 Huang, J. E. et al. $\mathrm{CO}<$ sub $>2</$ sub $>$ electrolysis to multicarbon products in strong acid. Science 372, 1074-1078, doi:doi:10.1126/science.abg6582 (2021).
99 Kas, R., Kortlever, R., Yılmaz, H., Koper, M. T. \& Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO_{2} electroreduction by process conditions. ChemElectroChem 2, 354-358 (2015).
100 Chen, C., Zhang, B., Zhong, J. \& Cheng, Z. Selective electrochemical CO_{2} reduction over highly porous gold films. J. Mater. Chem. A 5, 21955-21964 (2017).
101 Xu , H. et al. Electrochemical ammonia synthesis through N_{2} and $\mathrm{H}_{2} \mathrm{O}$ under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy 69, 104469 (2020).
102 Wang, J. et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1-7 (2018).
103 Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. \& Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29-36 (2016).
104 Wuttig, A., Yoon, Y., Ryu, J. \& Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO_{2} electroreduction. J. Am. Chem. Soc. 139, 17109-17113 (2017).
105 Gao, D., Arán Ais, R. M., Jeon, H. S. \& Cuenya, B. R. Rational catalyst and electrolyte design for CO_{2} electroreduction towards multicarbon products. Nat. Catal. 2, 198-210 (2019).
106 Gao, D. et al. Activity and selectivity control in CO_{2} electroreduction to multicarbon products over $\mathrm{CuO}_{\mathrm{x}}$ catalysts via electrolyte design. ACS Catal. 8, 10012-10020 (2018).
107 Monteiro, M. C. et al. Absence of CO_{2} electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal., 1-9 (2021).
$108 \mathrm{Sa}, \mathrm{Y} . \mathrm{J}$. et al. Catalyst-electrolyte interface chemistry for electrochemical CO_{2} reduction. Chem. Soc. Rev. 49, 6632-6665 (2020).
109 Singh, M. R., Kwon, Y., Lum, Y., Ager III, J. W. \& Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO_{2} over Ag and Cu. J. Am. Chem. Soc. 138, 13006-13012 (2016).

110 Ringe, S. et al. Understanding cation effects in electrochemical CO_{2} reduction. Energy Environ. Sci. 12, 3001-3014 (2019).
111 Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 11, 1-11 (2020).
112 Schizodimou, A. \& Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171-176 (2012).

113 Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277-11287 (2017).
114 Gu , J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nature Catalysis 5, 268-276, doi:10.1038/s41929-022-00761-y (2022).
115 Hao, Y. C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448-456 (2019).

116 Wang, B., Qin, L., Mu, T., Xue, Z. \& Gao, G. Are ionic liquids chemically stable? Chem. Rev. 117, 71137131 (2017).

117 Shkrob, I. A. \& Wishart, J. F. Charge trapping in imidazolium ionic liquids. J. Phys. Chem. B 113, 55825592 (2009).
118 Feaster, J. T. et al. Understanding the influence of [EMIM]Cl on the suppression of the hydrogen evolution reaction on transition metal electrodes. Langmuir 33, 9464-9471 (2017).
119 Johnson, K. E. What's an ionic liquid? Interface-Electrochemical Society 16, 38-41 (2007).
120 Alvarez Guerra, M., Albo, J., Alvarez Guerra, E. \& Irabien, A. Ionic liquids in the electrochemical valorisation of CO_{2}. Energy Environ. Sci. 8, 2574-2599 (2015).
121 Zhang, S. et al. Ionic liquid-based green processes for energy production. Chem. Soc. Rev. 43, 7838-7869 (2014).

122 Klähn, M. \& Seduraman, A. What determines CO_{2} solubility in iIonic liquids? A molecular simulation study. J. Phys. Chem. B 119, 10066-10078 (2015).
123 Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO_{2} to CO at low overpotentials. Science 334, 643-644 (2011).

124 Rey, N. G. \& Dlott, D. D. Effects of water on low-overpotential CO_{2} reduction in ionic liquid studied by sum-frequency generation spectroscopy. Phys. Chem. Chem. Phys. 19, 10491-10501 (2017).
125 Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO_{2} reduction in ionic liquid. Science 353, 467-470 (2016).
126 Yano, H., Tanaka, T., Nakayama, M. \& Ogura, K. Selective electrochemical reduction of CO_{2} to ethylene at a three-phase interface on copper (I) halide-confined Cu -mesh electrodes in acidic solutions of potassium halides. J. Electroanal. Chem. 565, 287-293 (2004).

127 Liu, X. et al. Highly active, durable ultrathin MoTe_{2} layers for the electroreduction of CO_{2} to CH_{4}. Small

14, 1704049 (2018).
128 Atifi, A., Boyce, D. W., DiMeglio, J. L. \& Rosenthal, J. Directing the outcome of CO_{2} reduction at bismuth cathodes using varied ionic liquid promoters. ACS Catal. 8, 2857-2863 (2018).
129 Stevanovic, S. \& Gomes, M. C. Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl (tetradecyl) phosphonium tris (pentafluoroethyl) trifluorophosphate (eFAP) ionic liquids. J. Chem. Thermodyn. 59, 65-71 (2013).

130 Zhou, F. et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516-2520 (2017).

131 Ortuño, M. A., Hollóczki, O., Kirchner, B. \& López, N. r. Selective electrochemical nitrogen reduction driven by hydrogen bond interactions at metal-ionic liquid interfaces. J. Phys. Chem. Lett. 10, 513-517 (2019).
132 Suryanto, B. H. et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 3, 1219-1224 (2018).

133 Araque, J. C., Yadav, S. K., Shadeck, M., Maroncelli, M. \& Margulis, C. J. How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from stokes-Einstein behavior explained. J. Phys. Chem. B 119, 7015-7029 (2015).

134 Mellmann, D., Sponholz, P., Junge, H. \& Beller, M. Formic acid as a hydrogen storage materialdevelopment of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954-3988 (2016).
135 Manthiram, A., Yu, X. \& Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1-16 (2017).

136 Han, N., Ding, P., He, L., Li, Y. \& Li, Y. Promises of main group metal-based nanostructured materials for electrochemical CO_{2} reduction to formate. Adv. Energy Mater. 10, 1902338 (2020).
137 Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO_{2} electroreduction to CO. Energy Environ. Sci. 11, 2531-2539 (2018).
138 Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777-2791 (2019).
139 Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO_{2} reduction using solid-electrolyte devices. Nat. Energy 4, 776-785 (2019).

140 Fan, L., Xia, C., Zhu, P., Lu, Y. \& Wang, H. Electrochemical CO_{2} reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 1-9 (2020).
141 Díez-Ramírez, J. et al. Enhancement of ammonia synthesis on a $\mathrm{Co}_{3} \mathrm{Mo}_{3} \mathrm{~N}-\mathrm{Ag}$ electrocatalyst in a K$\beta \mathrm{Al}_{2} \mathrm{O}_{3}$ solid electrolyte cell. ACS Sustain. Chem. Eng. 5, 8844-8851 (2017).
142 Lan, R. \& Tao, S. Electrochemical synthesis of ammonia directly from air and water using a $\mathrm{Li}^{+} / \mathrm{H}^{+} / \mathrm{NH}_{4}{ }^{+}$ mixed conducting electrolyte. RSC Adv. 3, 18016-18021 (2013).

143 Sheets, B. L. \& Botte, G. G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem. Comm. 54, 4250-4253 (2018).

144 Guo, X., Du, H., Qu, F. \& Li, J. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 7, 3531-3543 (2019).

145 Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E. \& Stoukides, M. Electrochemical synthesis of ammonia in solid electrolyte cells. Front. Energy Res. 2, 1 (2014).

146 Chang, X., Wang, T. \& Gong, J. CO_{2} photo-reduction: insights into CO_{2} activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177-2196 (2016).

147 Weiss, R. F. in Deep Sea Research and Oceanographic Abstracts. 721-735 (Elsevier).
148 Raciti, D., Mao, M., Park, J. H. \& Wang, C. Mass transfer effects in CO_{2} reduction on Cu nanowire electrocatalysts. Catal. Sci. Technol. 8, 2364-2369 (2018).

149 Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. \& Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nature Reviews Materials 7, 55-64, doi:10.1038/s41578-021-003562 (2022).

150 Tan, Y. C., Lee, K. B., Song, H. \& Oh, J. Modulating Local CO2 Concentration as a General Strategy for Enhancing $\mathrm{C}-\mathrm{C}$ Coupling in CO 2 Electroreduction. Joule 4, 1104-1120, doi:https://doi.org/10.1016/j.joule.2020.03.013 (2020).
151 Weng, L.-C., Bell, A. T. \& Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Physical Chemistry Chemical Physics 20, 16973-16984, doi:10.1039/C8CP01319E (2018).
152 Xing, Z., Hu, L., Ripatti, D. S., Hu, X. \& Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 1-11 (2021).

153 Pham, T. H. M. et al. Enhanced Electrocatalytic CO2 Reduction to C2+ Products by Adjusting the Local Reaction Environment with Polymer Binders. Advanced Energy Materials 12, 2103663, doi:https://doi.org/10.1002/aenm. 202103663 (2022).

154 Li , J. et al. Efficient electrocatalytic CO_{2} reduction on a three-phase interface. Nat. Catal. 1, 592-600 (2018).

155 Kim, C. et al. Tailored catalyst microenvironments for CO 2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nature Energy 6, 1026-1034, doi:10.1038/s41560-021-00920-8 (2021).

156 Kordali, V., Kyriacou, G. \& Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Comm., 1673-1674 (2000).

157 Yang, X. et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 140, 13387-13391 (2018).
158 Zhang, J. et al. Three-phase electrolysis by gold nanoparticle on hydrophobic interface for enhanced electrochemical nitrogen reduction reaction. Adv. Sci. 7, 2002630 (2020).
159 Chen, S. et al. Room-temperature electrocatalytic synthesis of NH_{3} from $\mathrm{H}_{2} \mathrm{O}$ and N_{2} in a gas-liquid-solid three-phase reactor. ACS Sustain. Chem. Eng. 5, 7393-7400 (2017).

160 Cheng, H. et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under
ambient conditions. Adv. Mater. 30, 1803694 (2018).
161 Xing, Z., Hu, X. \& Feng, X. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO_{2} electrolysis to formate. ACS Energy Lett. 6, 1694-1702 (2021).
162 Lee, S., Kim, M., Lee, K. T., Irvine, J. T. \& Shin, T. H. Enhancing electrochemical CO_{2} reduction using $\mathrm{Ce}(\mathrm{Mn}, \mathrm{Fe}) \mathrm{O}_{2}$ with $\mathrm{La}(\mathrm{Sr}) \mathrm{Cr}(\mathrm{Mn}) \mathrm{O}_{3}$ cathode for high-temperature solid oxide electrolysis cells. Adv. Energy Mater., 2100339 (2021).

Chapter 3. Improved electrochemical conversion of CO_{2} to multi-carbon products by using molecular doping

3.1 Abstract

The conversion of CO_{2} into desirable multicarbon products via the carbon dioxide reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ hold promise to achieve a circular carbon economy. In this chapter, I report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO_{2} into hydrocarbon molecules. We identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C_{2+} species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst. As a result, we achieve a high Faradaic efficiency for the C_{2+} formation of $\approx 80 \%$ and full-cell energy efficiency of 20.3% with a specific current density of 261.4 $\mathrm{mA} \mathrm{cm}{ }^{-2}$ for C_{2+} using functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes.

3.2 Introduction

This chapter is dedicated to use the electron withdrawing nature of functional groups to modify the catalyst surface to orient the reaction pathway towards the production of C_{2+} species. As introduced in chapter 1, the electrochemical reduction of CO_{2} to hydrocarbons using renewable energy is regarded as an effective way to close the carbon cycle via the conversion of CO_{2} into chemical precursors or fuels ${ }^{1,2}$. The electrochemical CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ toward single carbon products has achieved tremendous progress ${ }^{3}$, especially for the production of C_{1} molecules such as carbon monoxide (CO) or methane $\left(\mathrm{CH}_{4}\right)^{4-7}$. Copper (Cu), as one of the few transition metals, can efficiently catalyze the electrolysis of CO_{2} to multi-carbon products such as ethylene, ethanol, acetate, propanol ${ }^{8}$, which possess higher market values and are more energy concentrated. Therefore, intensive efforts have been devoted to improve the reaction selectivity towards the production of C_{2} and C_{2+} molecules, including alloying ${ }^{9-12}$, surface doping $1^{3,14}$, ligand modification ${ }^{15,16}$, and interface engineering ${ }^{17-20}$. Among these strategies, designing Cu-based catalysts by adapting some of the concept of molecular catalysts in order to finely tailor the behavior of the active sites of metallic surfaces is currently regarded as the long-standing interest for the controlled design of novel electrocatalytic materials. Increasing the oxidation state of copper has been suggested to improve the $\mathrm{CO}_{2} \mathrm{RR}$ performance and notably the formation of C_{2+} species ${ }^{14,21,22}$. Various strategies are being explored to prepare $\mathrm{Cu}^{\delta+}$ by using controlled oxidation via plasma treatments or doping with boron and halides ${ }^{14,23-25}$. Alternatively, molecular engineering of either the electrolyte or the catalyst surface has recently been proposed for orienting the selectivity of the reaction by stabilizing intermediates, inhibiting proton diffusion, or acting as redox mediators during the electrochemical CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)^{26-30}$. Organic species such as N -aryl pyridinium salts ${ }^{31,32}$, imidazole ${ }^{33-35}$, thiol ${ }^{36-37}$ and cysteamine ${ }^{38}$ have been reported as effective lever to tune the reaction selectivity toward the formation of specific products by stabilizing key reaction intermediates. Functionalization of alkyl chains can also lead to better $\mathrm{CO}_{2} \mathrm{RR}$ performance by suppressing the
competitive hydrogen evolution reaction (HER) via the creation of hydrophobic regions on the surface of the catalyst ${ }^{37,39,40}$.

In Chapter 3, I will present an effective strategy to control the surface oxidation state of bimetallic $\mathrm{Ag}-\mathrm{Cu}$ electrodes by using functionalization for tuning the oxidation state of $\mathrm{Cu}^{\delta+}$. By combining Auger and X-ray absorption spectroscopies (XAS), we identified that the grafting of aromatic heterocyclic functional groups can efficiently dope the surface of Cu by withdrawing electrons from the metal surface leading to the formation of $\mathrm{Cu}^{\delta+}$ species. Compared to pristine non-functionalized and alkyl-functionalized electrodes, the modified electrodes display a clear improvement of the reaction rates and Faradaic efficiency towards the production of C_{2+} products. Operando Raman and X-ray absorption spectroscopy (XAS) suggest that the presence of $\mathrm{Cu}^{\mathrm{o+}}$ with $0<\delta<1$ favors the formation of adsorbed CO with the atop conformation which is a known key intermediate specie involved in the C-C coupling step associated with the formation of multi-carbon products. When assembled in a membrane electrode assembly (MEA) electrolyzer, the catalyst delivers a Faradaic efficiency (FE) for C_{2+} products of $80 \pm 1 \%$ and a total C_{2+} energy efficiency (EE) of 20.3% for the full cell.

3.3 Experimental methods

3.3.1 Materials

Chemicals

Copper sulfates ($\left.\mathrm{CuSO}_{4}, ~ 99 \%\right)$, silver nitrate $\left(\mathrm{AgNO}_{3}, 99 \%\right)$, ammonium sulfate $(99 \%$, ethylenediamine($\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, 99.5 \%$), potassium hydroxide ($\mathrm{KOH}, 90 \%$) potassium bicarbonate $\left(\mathrm{KHCO}_{3}\right.$, 99.7\%), sulfuric acid($\mathrm{H}_{2} \mathrm{SO}_{4}, 99.99 \%$), Iridium (III) chloride hydrate ($\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}, 99.9 \%$), 5-Amino-1,3,4-thiadiazole-2-thiol $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{~S}_{2}, 95 \%\right)$, 3-amino-1,2,4-triazole-5-thiol $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}, 99 \%\right)$, cysteamine $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NS}, 99 \%\right)$ and 1-Propanethiol ($\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~S}$, 99\%) were purchased from Sigma-Aldrich. Nafion 117 and anion exchange membrane (Fumapem FAA-3-50), gas diffusion layer (Freudenberg, H23C6), and titanium mesh were obtained from Fuel Cell Store. All chemicals were used as received. All aqueous solutions were prepared using deionized water with a resistivity of $18.2 \mathrm{M} \Omega \mathrm{cm}^{-1}$.

Electrodes preparation

Before depositing catalysts, gas diffusion electrode (GDE) was treated with sulfuric acid by sonicating 20 minutes. After acid treatment, the remaining acid was rinsed with deionized water for 5 min three times, and gas diffusion layer was dried at room temperature. To obtain the working electrodes, 15% at. $\mathrm{Ag}-\mathrm{Cu}$ catalysts were prepared through a pulse electrodeposition approach under CO_{2} bubbling condition. Firstly, electrochemical deposition of the Ag catalyst was performed using a potentiostat (VSP potentiostat from Bio-Logic Science Instruments). The electrolyte used was composed of $0.01 \mathrm{M} \mathrm{AgNO}_{3}, 0.6 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, and 0.04 M ethylenediamine. Ag catalyst was electrodeposited on GDE at a current density of $15 \mathrm{~mA} \mathrm{~cm}^{-2}$ with on- and off-time pulsing parameters of 0.25 and 3 s , respectively. Then, the Cu was electrodeposited on Ag at a constant current density of $-400 \mathrm{~mA} \mathrm{~cm}^{-}$
${ }^{2}$ for 45 s to obtain the 15% at. Ag -Cu electrode. The solution consisted of $0.2 \mathrm{M} \mathrm{CuSO}_{4}$ and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with continuously CO_{2} bubbling.

Functionalization of the Ag-Cu electrodes

The different functional groups (organic chemicals(5-Amino-1,3,4-thiadiazole-2-thiol $\left(\mathrm{N}_{2} \mathrm{SN}\right.$), 1,3,4-thiadiazole-2,5-dithiol ($\mathrm{N}_{2} \mathrm{SS}$), 3-amino-1,2,4-triazole-5-thiol $\left(\mathrm{N}_{3} \mathrm{~N}\right)$, cysteamine $\left(\mathrm{C}_{2} \mathrm{~N}\right)$ and 1-Propanethiol $\left(\mathrm{C}_{3}\right)$) were dissolved in ethanol to a fixed concentration of 5 mM . The $\mathrm{Ag}-\mathrm{Cu}$ electrodes were treated by the different functional solutions via drop-casting $20 \mu \mathrm{~L}$ of the solution containing the different thiol reagents on the GDE. After 5 min , the electrode was washed with ethanol and dried under argon flow.

Physical characterizations

A field emission scanning electron microscope (TESCAN Mira3) was employed to observe the morphology of samples. Aberration-corrected high-resolution (scanning) TEM imaging (HR-(S)TEM), energy-dispersive X-ray spectroscopy (EDS) and spatially-resolved electron energy-loss spectroscopy (SR-EELS) were performed using a FEI Titan Cubed Themis microscope which was operated at 80 kV . The Themis is equipped with a double Cs aberration corrector, a monochromator, an X-FEG gun, a super EDS detector, and an Ultra High Resolution Energy Filter (Gatan Quantum ERS) which allows for working in Dual-EELS mode. HR-STEM imaging was performed by using high-angle annular dark-field (HAADF) and annular dark-field (ADF) detectors. SR-EELS spectra were acquired with the monochromator excited allowing an energy resolution of 1.1 eV with an energy dispersion of 0.4 eV /pixel. Liquid products were quantified by 1 H NMR spectroscopy (600 MHz Avance III Bukrer with a cryorobe Prodigy TCI) using deionized water with 0.1% (w/w) of DSS (Sodium trimethylsilyl propane sulfonate) like internal standard for the quantification of the ethanol and formate. An 1D sequence water suppression with excitation sculpting with gradients(zgesgp)was used for the acquisition (Number of scan $=32$, Delay D1=30 s). X-ray photoelectron spectroscopy (XPS) measurements were carried out on Thermo Electron ESCALAB 250 System using Al K α X-ray radiation (1486.6 eV) for excitation. Raman measurements were conducted using a Renishaw in Via Raman microscope and an $\times 50$ objective (Leica) equipped with a 633 nm laser. Operando Raman measurements were carried out using a modified liquid-electrolyte flow cell using a 20 s integration time and averaging 10 scans per region. The spectra were recorded and processed using the Renishaw WiRE software (version 4.4). $\mathrm{An} \mathrm{Ag} / \mathrm{AgCl}$ electrode and a Pt plate were used as the reference and counter electrodes respectively. Ex situ X-ray absorption spectra at the copper K-edges and Operando X-ray absorption spectroscopy (XAS) measurements at the copper K-edges were collected at Beijing Synchrotron Radiation Facility (BSRF) on beamline 1W1B and the SOLEIL synchrotron SAMBA beamline, respectively.

Operando X-ray absorption spectroscopy (XAS)

Ex-situ and operando XAS measurements at the copper K-edges were collected at Beijing Synchrotron Radiation Facility (BSRF) on beamline 1W1B and the SOLEIL synchrotron SAMBA beamline, respectively. Operando Cu K-edge XAS measurements of functionalized $\mathrm{Ag}-\mathrm{Cu}$ were obtained by using a $\mathrm{Si}(111)$ monochromator at the Cu K-edge for energy selection. The beam size was $1 \times 0.5 \mathrm{~mm}$. The signals were collected in fluorescence mode using a 13-channel Ge detector. The intensity of the incident radiation was measured with an ionization chamber (I_{0}) filled with an $\mathrm{N}_{2}(500 \mathrm{mbar}) / \mathrm{He}$ (500 mbar) mixture. Two additional ionization chambers filled with 1700 mbar N_{2} (in I_{1} chamber) and an $\operatorname{Ar}(150 \mathrm{mbar}) / \mathrm{N}_{2}(850 \mathrm{mbar})$ mixture (in I_{1} chamber) were used for measurements in transmission mode in the case of the reference samples. A custom-built electrochemical cell was used for operando XAS measurements. The applied potential was controlled by a VSP potentiostat (Bio-Logic Science Instruments). A platinum wire and $\mathrm{Ag} / \mathrm{AgCl}$ electrode (3 M KCl) were used as counter and reference electrodes, respectively. For the XAS studies, 15% at. $\mathrm{Ag}-\mathrm{Cu}$ was firstly electrodeposited on gas diffusion layer (GDL, Sigracet 22 BB , Fuel Cell Store) used as gas diffusion electrode (GDE) and then functional solutions were dropcoated on the catalyst side, while the other side of the GDL was covered with polyamide tape. The GDL was then tape on a graphite foil and subsequently, the electrode was mounted in the operando cell with the graphite foil acting as a working electrode and window. A 0.5 M solution of KHCO_{3} was used as electrolyte for the $\mathrm{CO}_{2} \mathrm{RR}$ and the cell was continuously purged with CO_{2} during the measurements. All measurements were performed at constant potentials of $-1.2 \mathrm{~V},-1.1 \mathrm{~V},-1.0 \mathrm{~V}$ and $-0.9 \mathrm{~V} v s$. RHE. Time-resolved spectra under $\mathrm{CO}_{2} \mathrm{RR}$ conditions were acquired every 30 min until no further changes were observed.

Data alignment and normalization of the X-ray absorption near edge structure (XANES) spectra were carried out using the Athena software. Fitting of the Cu K-edge extended X-ray absorption fine structure (EXAFS) spectra $\chi(\mathrm{k}) \mathrm{k}^{2}$ of the as-prepared catalysts was carried out in R -space in the range from $\mathrm{R}_{\min }=1 \AA$ up to $\mathrm{R}_{\max }=$ $2.1 \AA$, while for the catalysts in the reduced state, $\mathrm{R}_{\min }=1.0 \AA$ to $\mathrm{R}_{\max }=3.0 \AA$ were used. The Fourier transforms were carried out in the k-range from $3.0 \AA^{-1}$ to $10.0 \AA^{-1}$ with a k-weighting of 1,2 and 3 . Fitting parameters were the coordination numbers N , interatomic distances R , disorder factors σ^{2} for $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{Cu}$ paths, as well as the corrections to the photoelectron reference energies $\Delta \mathrm{E}_{0}$. The $\mathrm{S}_{0}{ }^{2}$ factors was set to 0.831 .

Computational details

All density functional theory (DFT) calculations were carried out in the Vienna Ab-initio Simulation Package (VASP) code with the projector augmented-wave (PAW) method. The exchange-correlation energy was treated using a general gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) formalism. A planewave basis with a kinetic energy cutoff of 500 eV was chosen to expand the electronic wave functions. To investigate the possible binding modes between functional molecular and catalysts, a 5 layers of Cu (111) slab ($7.7386 \AA \times 7.7386 \AA$), in which the two bottom layers were kept fixed during relaxation, was built with a vacuum space of about $20 \AA$. For the geometrical optimizations, all atoms were fully relaxed to the ground state with the convergence of energy and forces setting to $1.0 \times 10^{-5} \mathrm{eV}$ and $0.01 \mathrm{eV}^{-1}$, where a $3 \times 3 \times 1 \Gamma$-centered Monkhorst-

Pack schemed k-mesh was used to sample the first Brillouin zone. To compare the bond strength between each group of functional molecular and $\mathrm{Cu}(111)$, the adsorption energy ($E_{\text {ads }}$) is calculated by using the following formula:

$$
\begin{equation*}
E_{a d s}=E_{C u / F M}-E_{C u}-E_{F M} \tag{1}
\end{equation*}
$$

where $E_{C u / F M}, E_{C u}$ and $E_{F M}$ denote the total electronic energies of an adsorbed system, a clean Cu (111) surface, and the free functional molecular, respectively. The DFT calculated were performed in collaboration with Ji Li from the University of Shaanxi University of Science \& Technology.

3.3.2 Electrochemical measurements

All electrochemical measurements were carried out at ambient temperature and pressure using a VSP electrochemical station from Bio-Logic Science Instruments equipped with a 5 A booster and FRA32 module. The cell voltages reported in all figures were recorded without iR correction. All the potentials in the H -cell were converted to values with reference to the RHE using:

$$
\begin{equation*}
E_{\mathrm{RHE}}=E_{\mathrm{Ag} / \mathrm{AgCl}}+0.197 \mathrm{~V}+0.0591 * \mathrm{pH} \tag{2}
\end{equation*}
$$

In the H -cell configuration, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode (3 M KCl) and Pt plate were used as reference and counter electrodes respectively. The electrolyte consisted in a $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ solution (99.9%, Sigma Aldrich), which was saturated with alternatively $\mathrm{CO} 2(\geq 99.998$, Linde) or $\operatorname{Ar}(5.0$, Linde). Prior any experiment, the electrolyte solutions were saturated by bubbling CO_{2} or Ar for at least 20 min .
The electrochemically active surface area (ECSA) of the different catalysts was determined using Pb underpotential deposition in H-cell. An Ar-saturated solution of $100 \mathrm{mM} \mathrm{HClO}_{4}+1 \mathrm{mM} \mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$ was used as electrolyte. The working electrode was held at -0.7 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ for 10 min and then cyclic voltammetry was recorded between -0.7 and 0.7 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ at $10 \mathrm{mV} \mathrm{s}^{-1}$. Pt foil was used as the counter electrode, while Ar (Linde, 99.998 \%) was continuously supplied to the electrolyte. The ECSA values for Cu and Ag were calculated assuming the deposition of a monolayer of Pb atoms over Cu and Ag surface with a conversion factor of $310 \mu \mathrm{C}$ cm^{-2} and $260 \mathrm{mC} \mathrm{cm}^{-2}$, respectively.

The MEA electrolyzer (Dioxide Materials) was comprised of the $\mathrm{Ag}-\mathrm{Cu}$ cathode, a Ti-IrO x mesh anode and an anion exchange membrane (AEM, Fumasep FAA-3-50, Fuel cell store). The anode and cathode flow fields are made of titanium and stainless steel with geometric active areas of $4 \mathrm{~cm}^{2}$ respectively. The anode was prepared by depositing $\mathrm{IrO}_{\mathrm{x}}$ on a titanium support ($0.002^{\prime \prime}$ ' thickness, Fuel Cell Store) by a dip coating followed by thermal annealing. Briefly, the titanium mesh was firstly degreased with acetone and DI water, then etched in a 6 M HCl (Reagent Grade, Bioshop) solution heated to $80^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ for 45 min before dip coating. The solution used for dip coating consisted of 30 mg of $\mathrm{IrCl}_{3} \mathrm{xH}_{2} \mathrm{O}$ (Alfa Aesar) dissolved in 10 mL of an iso-propanol solution with 10% concentrated HCl . The etched titanium mesh was dipped into the IrCl_{3} solution, dried in an oven at $100{ }^{\circ} \mathrm{C}$ for 10 min before calcination in air at $500^{\circ} \mathrm{C}$ for 10 min . The dipping and calcination process was repeated until a suitable loading was achieved ($2 \mathrm{mg} \mathrm{cm}^{-2}$).

The AEM was firstly placed between the anode and cathode flow fields and then assembled together (Supplementary Figures 24 and 25). The flow fields were mainly responsible for the effective supply in aqueous anolyte solution and humidified CO_{2} over the respective surfaces of anode and cathode electrodes. The anode and cathode gaskets were placed between the flow fields and the respective electrodes to ensure proper sealing. An anion exchange membrane (Fumapem FAA-3-50) (Dioxide Materials) was activated in 0.5 M aqueous KOH solution for at least 24 hours, washed with deionized water and used as the anion-exchange membrane (AEM). A $0.1 \mathrm{M} \mathrm{KHCO}_{3}$ anolyte solution was circulated through the anode side of the electrolyzer with the constant flow rate of $30 \mathrm{ml} / \mathrm{min}$ via a peristaltic pump, while the fully humidified CO_{2} was supplied to the cathode side with the constant flow rate of 10 standard cubic centimeters per minute (sccm). After three-minutes of initial operation, a full-cell potential of -2.8 V was applied to the electrolyzer and the potential then was gradually increased from -2.8 V with the increments of -0.10 V or -0.05 V . The voltage increments were made upon complete stabilization of the corresponding current, typically 15-20 min.

3.3.3 Quantification of the CO2RR products

The electrochemical data were recorded while simultaneously collecting the $\mathrm{CO}_{2} \mathrm{RR}$ gas products by using an automatic sampler connected to the cathode outlet. A cold trap was used a collect the liquid products before the sampler. For each applied potential, the gas products were collected at least 3 times with proper time intervals. The gas alliquots were then injected into an online gas chromatograph (Agilent, Micro GC-490) equipped with a TCD detector and Molsieve 5A column continuously. Hydrogen and argon (99.9999\%) were used as the carrier gases. Liquid products were quantified by 1H NMR spectroscopy (600 Mhz Avance III Bukrer with a cryorobe Prodigy TCI) using deionized water with $0.1 \%(\mathrm{w} / \mathrm{w})$ of DSS (Sodium trimethylsilylpropanesulfonate) like internal standard for the quantification of the ethanol and formate. An 1D sequence water suppression with excitation sculpting with gradients(zgesgp) was used for the acquisition (Number of scan $=32$, Delay D1=30 s). Owing to the liquid product crossover, the FE values of the liquid products were calculated based on the total amount of the products collected on the anode and cathode sides during the same period.

Stability measurements in the MEA configuration

For the stability test, the MEA electrolyzer was operated at a constant voltage of -4.55 V with a continuous feeding in CO_{2}. The gas products were collected at frequent time intervals. The FE values were calculated from the average value obtained from three successive injections. As for the liquid products, the total liquid products were collected at the end of the experiments.

Faradaic Efficiency and Energy Efficiency Calculations

The Faradaic efficiency (FE) of each gas product was calculated as follows:

$$
\begin{equation*}
F E_{\text {gas }}=g_{i} \times v \times \frac{z_{i}}{R T} P_{0} \times \frac{1}{I_{\text {total }}} \times 100 \% \tag{3}
\end{equation*}
$$

The Faradaic efficiency (FE) of each liquid product was calculated as follows:

$$
\begin{equation*}
F E_{\text {liquid }}=l_{i} \times \frac{z_{i}}{Q_{\text {total }}} F \times 100 \% \tag{4}
\end{equation*}
$$

The formation rate (R) for each species (i) was calculated as follows:

$$
\begin{equation*}
R_{i}=\frac{Q_{\text {total }} \times F E_{i}}{96485 \times z_{i} \times t \times S} \tag{5}
\end{equation*}
$$

The full-cell energy efficiencies (EE) was calculated as follows:

$$
\begin{equation*}
E E=\frac{\left(1.23-E_{i}\right) \times F E_{i}}{E_{\text {cell }}} \tag{6}
\end{equation*}
$$

where g_{i} represents the volume fraction of gas product i; v represents the gas flow rate at the outlet in scem; z_{i} represents the number of electrons required to produce one molecule of product $i ; I_{\text {total }}$ represents the total current; l_{i} represents the number of moles of liquid product i; and $Q_{\text {total }}$ represents the charge passed while the liquid products are being collected. $P_{0}=1.01 \times 105 \mathrm{~Pa}, T=273.15 \mathrm{~K}, F=96,485 \mathrm{C} \mathrm{mol}^{-1}$ and $R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} ; t$ represents the electrolysis time (h); S represents the geometric area of the electrode (cm^{2}); E_{i} represents the thermodynamic potential (versus RHE) for $\mathrm{CO}_{2} \mathrm{RR}$ to species i and $E_{\text {cell }}$ represents the cell voltage in twoelectrode setup.

3.4 Results and discussion

3.4.1 Catalyst design and characterization

We fabricated the functionalized bimetallic catalyst by using a two-step strategy based on the controlled electrodeposition of Ag and Cu followed by the modification of the catalyst surface via functionalization (Fig. 1a). The Ag-Cu electrodes were prepared by firstly depositing Ag on gas diffusion electrodes (GDE) using pulsed electrodeposition. The silver structure grows in the form of a dendritic fish-bone structure with sharp Ag nanoneedles (Fig. 2). The Ag layer was then used as a scaffold for the deposition of copper. The final structure of the catalyst on the GDE electrodes was found to be porous where Cu is preferentially deposited on Ag (Figs. 1 b and c , Fig. 3). The catalytic performance of pure Cu and $\mathrm{Ag}-\mathrm{Cu}$ electrodes were systematically investigated (Figs. 3 and 4), and our results indicated appropriate loading of Ag contributes to the enhancement of the formation of CO, which may further facilitate C_{2+} production on copper. We determined the optimum composition to be $15 \% \mathrm{at}$. Ag in $\mathrm{Ag}-\mathrm{Cu}$ (labeled as 15% at. $\mathrm{Ag}-\mathrm{Cu}$).

Fig. 1. Structural and elemental composition of the functionalized $\mathrm{Ag}-\mathrm{Cu}$ catalysts. (a), Schematic representation of the functionalized Ag-Cu electrodes in a membrane electrode-assembly. (b), (c), Cross-section (c) and top-view (c) scanning electron microscope (SEM) images of the functionalized hierarchical Ag-Cu catalyst on a gas diffusion electrode (GDE). (d), High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image (left) and corresponding Cu and Ag EDS elemental maps of $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ (right). (e), High-resolution transmission electron microscope (HR-TEM) micrograph of the $\mathrm{N}_{2} \mathrm{SN}$-functionalized electrode (e). (f), HAADF-STEM image and the corresponding Cu and S EDS elemental maps taken from a section of Cu surface on the $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrode. (g), HAADF-STEM image of the Cu surface of $\mathrm{N}_{2} \mathrm{SN}$-functionalized Ag - Cu . (h) (top), Electron energy loss spectroscopy (EELS) elemental mapping of C taken from the area marked by the box in (g). (h) (bottom), EELS spectrum of the C-K edge with fine structures characteristics of carbon linked to heteroatoms from $\mathrm{N}_{2} \mathrm{SN}$ layer on the Cu surface. (i), Raman spectra of pristine (non-functionalized) $\mathrm{Ag}-\mathrm{Cu}$ (gray), C_{3}-functionalized $\mathrm{Ag}-\mathrm{Cu}$ (orange), $\mathrm{C}_{2} \mathrm{~N}$-functionalized Ag Cu (green), $\mathrm{N}_{3} \mathrm{~N}$-functionalized Ag - Cu (purple) and $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ (blue).

Fig. 2 SEM images of pure Ag.

Fig. 3 SEM images of the $\mathrm{Ag}-\mathrm{Cu}$ electrodes with different Ag atomic ratios. SEM images of different atomic ratios of Ag in Ag-Cu electrodes (0\%at., 10% at., 15% at., 25% at. and 50% at.).

Fig. 4 Comparisons of the current density on the different catalysts measured in the H -cell reactors. The current density for the different Ag atomic ratios in $\mathrm{Ag}-\mathrm{Cu}$ catalysts (0% at. $\mathrm{AgCu}, 10 \% \mathrm{at}$. $\mathrm{AgCu}, 15 \% \mathrm{at}$. $\mathrm{AgCu}, 25 \% \mathrm{at}$. AgCu , and 50% at. AgCu .

To control the oxidation state of Cu , we sought to functionalize the catalyst with thiol molecules via dip coating. We selected thiadiazole $\left(\mathrm{N}_{2} \mathrm{SN}\right)$ and triazole $\left(\mathrm{N}_{3} \mathrm{~N}\right)$ derivatives as electron deficient functional molecules to react with the surface of the catalyst ${ }^{41-44}$ (Fig. 5). For comparison, the bimetallic electrodes were also modified with 1propanethiol $\left(\mathrm{C}_{3}\right)$ and cysteamine $\left(\mathrm{C}_{2} \mathrm{~N}\right)$ as model short alkyl and alkyl amine functional groups (Figs. 5 and 6).

$\left(\mathrm{N}_{2} \mathrm{SN}\right)$

($\left.\mathrm{C}_{2} \mathrm{~N}\right)$

$\left(\mathrm{C}_{3}\right)$

Fig. 5 Molecular structures of the different molecules used for the functionalization of $\mathrm{Ag}-\mathrm{Cu}$.

Fig. 6 SEM figures for the pristine and functionalized Ag-Cu. SEM figures of different functional groups modified 15% at. Ag-Cu electrodes: P (a), (b) $\mathrm{N}_{3} \mathrm{~N}$, (c) $\mathrm{C}_{2} \mathrm{~N}$ and (d) C_{3}.

The modification of the electrode is clearly visible from the change of the water contact angle that varies between 86° and 129° depending on the nature of the functional groups compared to 84° for the pristine catalyst (Fig. 7). To verify the presence of the functional groups, we performed energy-dispersive X-ray spectroscopy (EDS). The corresponding elemental map shows the uniform distribution of S, N and C on $\mathrm{Ag}-\mathrm{Cu}$ electrode whereas a thin amorphous layer is observed under high resolution TEM on the surface of the catalyst with a thickness of $\approx 2.5 \mathrm{~nm}$ (Figs. 1d, e, f and Fig. 8). The existence of an organic layer on the Ag-Cu electrodes is further confirmed by the high-angle annular dark-field scanning transmission electron microscopy (HAADFSTEM) and the electron energy loss spectroscopy (EELS) mapping of the carbon and sulfur elements. Remarkably, the EELS spectrum of the C-K edge displays fine structures characteristics of carbon linked to heteroatoms at $\approx 292 \mathrm{eV}$ (Figs. 1 g and h, Fig. 9). Raman and Fourier transformed infrared (FTIR) spectroscopies were also used to further confirm the successful attachment of the functional groups on the surface of the catalyst (Fig. 1 i and Fig. 10). The Raman signatures of the different grated molecules were detected on the surface of the Ag-Cu electrodes, while strong FTIR bands at $1303 \mathrm{~cm}^{-1}, 1584 \mathrm{~cm}^{-1}$ and $1622 \mathrm{~cm}^{-1}$ are only presented on $\mathrm{N}_{2} \mathrm{SN}$-, $\mathrm{N}_{3} \mathrm{~N}$ - and $\mathrm{C}_{2} \mathrm{~N}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes and attributed to the $\mathrm{C}-\mathrm{C}$ or $\mathrm{C}-\mathrm{N}$ stretching, the NH_{2} scissor and
the C-N stretching modes respectively ${ }^{45-47}$ (Fig. 10). The successful functionalization with thiadiazole and triazole is further confirmed from the deconvolution of the X-ray photoelectron spectra from the S2p and N1s regions respectively (Figs. 11b and c). The peak of S2p was deconvoluted into three doublets at 162.75, 164.23 and 168.31 eV for the $\mathrm{S}_{2} \mathrm{p}_{3 / 2}$, corresponding to S-H and S-C bonds on both thiadiazole and triazole, respectively ${ }^{48}$ Analogously, the N1s spectrum (Fig. 11c) can be divided into three components at $398.24,399.63$ and 400.70 eV , which reflects the existence of $\mathrm{N}-\mathrm{N}, \mathrm{C}-\mathrm{N}$, and $\mathrm{N}-\mathrm{H}$ bonds on the surface of functionalized electrodes. The presence of crystalline Ag and Cu on the gas diffusion electrode was further observed from the X-ray diffraction patterns, whereas the presence of distinct peaks from the Ag and Cu facets agrees with the absence of alloy structure of the bimetallic catalyst. (Fig. 12). To clarify the orientation of the aromatic heterocycles on the catalyst surface, we carried out density functional theory (DFT) calculations to estimate the total energy and the binding energy of thiadiazole on Cu using a model with 5 Cu (111) slabs (Figs. 13 and 14). Among the different configurations tested, the adsorption of thiadiazole is more stable when the $\mathrm{N}_{2}-\mathrm{N}_{3}$ nitrogen atoms of the diazole sit on Cu (111) and the binding energy is estimated to -1.08 eV - at least 0.37 eV lower than for the other configurations (Table 1).

Fig. 7 Wettability of the pristine and functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes. The water contact angles measured for $15 \% \mathrm{at}$. Ag$\mathrm{Cu}: \mathrm{P}(\mathrm{a}), \mathrm{N}_{2} \mathrm{SN}(\mathrm{b}), \mathrm{N}_{3} \mathrm{~N}(\mathrm{c}), \mathrm{C}_{2} \mathrm{~N}$ (d), C_{3} (e) and $\mathrm{N}_{2} \mathrm{SS}$ (f) before $\mathrm{CO}_{2} R R$.

Fig. 8 Structural and compositional analyses of the 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{2} \mathrm{SN}$ catalyst. Low magnification SEM images (top left panel) and the related EDX elemental mapping of $\mathrm{Cu}, \mathrm{Ag}, \mathrm{C}, \mathrm{N}$, and S (right panels).

Fig. 9 HAADF-STEM data of $\mathrm{N}_{2} \mathrm{SN}$-functionalized Ag-Cu catalyst. Right panel: The superposition of the HAADF-STEM image of the $\mathrm{N}_{2} \mathrm{SN}$ functionalized Ag -Cu ultrathin section with the sulfur (S) EDS elemental map. The arrow highlights the area used to extract the intensity profiles. Left panel: The corresponding intensity profiles of the HAADF-STEM images and S elemental map.

Fig. 10 Fourier transformed infrared (FTIR) spectra of the pristine functional groups. The ATR-FTIR spectra of pristine (non-functionalized) 15% at. Ag-Cu (gray), 15% at. Ag-Cu-N $\mathrm{N}_{2} \mathrm{SN}$ (purple), 15% at. Ag-Cu-N3N (blue), 15% at. Ag-Cu$\mathrm{C}_{2} \mathrm{~N}$ (green) and 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{C}_{3}$ (orange) before $\mathrm{CO}_{2} R R$.

Fig. 11 X-ray photoelectron spectra (XPS) spectra of the different Ag-Cu catalysts. The high-resolution XPS spectra of the Ag 3 d (a), $\mathrm{S} 2 \mathrm{p}(\mathrm{b})$ and N 1 s (c) regions of the different functionalized $15 \% \mathrm{at} . \mathrm{Ag}-\mathrm{Cu}$ catalysts before reaction.

Fig. 12 X-ray diffraction (XRD) data of the different Ag-Cu catalysts. Powder XRD spectra of $15 \% \mathrm{at}$. Ag-Cu and $15 \% \mathrm{at}$. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{2} \mathrm{SN}$ compared with Cu, Ag metals used as references.

Fig. 13 Schematic representations of the different configurations of $\mathrm{N}_{2} \mathrm{SN}$ on Cu (side view). Molecular structure of N 2 SN (a), S1-C2-S2 flat model (b), S1 model (c), N2-N3 model (d), N1-S1 model (e) and S1-S2 model (f).

Fig. 14 The different configurations of $\mathrm{N}_{2} \mathrm{SN}$ on Cu (top view) used for the calculation results summarized in Supplementary Table 1. S1-C2-S2 flat model (a), S1 model (b), N2-N3 model (c), N1-S1 model (d) and S1-S2 model (e).

Table 1 Summary of the total energy and adsorption energy of the different configurations of the thiadiazole-functionalized Cu catalyst. The different configurations are presented in Fig 13.

Configuration	Energy $(\mathbf{e V})$	Slab $(\mathbf{e V})$	Functional molecular (eV)	Adsorption energy (eV)
$\mathrm{S}_{1}-\mathrm{C}_{2}-\mathrm{S}_{2}$	-222.80	-161.30	-60.79	-0.71
$\mathrm{~S}_{1}$	-222.40	-161.30	-60.79	-0.30
$\mathrm{~N}_{2}-\mathrm{N}_{3}$	-223.58	-161.30	-60.79	-1.08
$\mathrm{~N}_{1}-\mathrm{S}_{1}$	-222.53	-161.30	-60.79	-0.44
$\mathrm{~S}_{1}-\mathrm{S}_{2}$	-222.63	-161.30	-60.79	-0.53

3.4.2 Investigation of the $\mathbf{C O} 2$ electro-reduction

The functionalized electrodes were electrochemically tested in a H -cell reactor using Argon and CO_{2}-saturated $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ electrolyte solutions. Fig. 15a shows that thiadiazole $\left(\mathrm{N}_{2} \mathrm{SN}\right)$ and triazole $\left(\mathrm{N}_{3} \mathrm{~N}\right)$ functionalized electrodes exhibit the highest current density and lowest onset potential in CO_{2}-saturated solution. We then evaluated the Faradaic efficiency (FE) by using nuclear magnetic resonance (NMR) and gas chromatography (GC) (See details in the Methods section). H_{2}, CO , formate, CH_{4} and C_{2+} products were formed on the bimetallic electrode (Fig. 16). Remarkably, the Faradaic efficiency for C_{1} and H_{2} - obtained via the $\mathrm{CO}_{2} \mathrm{RR}$ and HER decreased after functionalization with thiazole and thiadiazole, while the FE for C_{2+} products sharply increases (Fig. 15b). Ethylene and ethanol are the major C_{2+} products detected, together with trace amount of acetate and n-propanol (Fig. 16). The FE for $\mathrm{C}_{2}+$ on $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$-functionalized electrodes are estimated to 57.3% and 51.0% at -1.2 V versus the reversible hydrogen electrode ($v s$. RHE) compared to only 18% for the pristine catalyst
corresponding to enhancements of 3.1 and 2.8 folds respectively (Fig. 15b). The selectivity towards the formation of C_{2+} products for both thiazole and thiadiazole functional groups increases continuously with increasing voltage from -0.3 to $-1.2 \mathrm{~V} v s$. RHE and starts decreasing after -1.3 V , whereas the values of FE for C_{1} products and H_{2} exhibit a volcano-shaped dependence with the applied potentials (Figs. 17a and b). This leads to an obvious enhancement of the specific current density for C_{2+} products ($\mathrm{j}_{\mathrm{c}_{2}+}$) up to 5 folds at -1.2 V vs. RHE (Fig. 15c). Conversely, the functionalization of the Ag-Cu electrodes with short alkyl or amino alkyl chains does not suppress the HER pathway nor improve the CO2RR activity (Fig. 15d). $\mathrm{C}_{2} \mathrm{~N}$ - and C_{3} - modified catalysts clearly display lower activities towards the CO2RR, notably with a minimal production of C_{2+} species and a relatively large FE for the evolution of H_{2}. Our results therefore highlight the importance of the nature of the functional groups on the $\mathrm{CO}_{2} \mathrm{RR}$ performance. To better evaluate the selectivity of C_{2+} products on thiadiazole- and triazolefunctionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes, we calculated the ratio in FE for C_{2+} products and hydrogen $\left(\mathrm{FE}_{\mathrm{C}_{2+}} / \mathrm{FE}_{\mathrm{H}_{2}}\right)$ (Fig. 15e). Compared with pristine and alkyl functionalized electrodes, both $\mathrm{N}_{2} \mathrm{SN}$ and $\mathrm{N}_{3} \mathrm{~N}$ functional groups present the largest $\mathrm{FE}_{\mathrm{C}_{2+}} / \mathrm{FE}_{\mathrm{H}_{2}}$ ratios - illustrating that the functionalization with aromatic heterocycles efficiently directs the reaction pathway towards the formation of C_{2+} products while suppressing the HER. To get a more accurate estimation of the intrinsic CO2RR performance of the functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes, we estimated the electrochemically active surface area of $\mathrm{Cu}\left(\mathrm{Cu}\right.$ ECSA) and Ag (Ag ECSA) in $15 \mathrm{at} . \% \mathrm{Ag}-\mathrm{Cu}$ and $\mathrm{N}_{2} \mathrm{SN}-$ 15at.\% Ag-Cu catalysts using Pb underpotential deposition (Pb UPD) (Figs. 18 and 19, and Table 2). The partial current densities for C_{2+} products measured in H -cell were normalized by the ECSA values for Cu . Remarkably, we found that the ECSA-normalized partial current density on $\mathrm{N}_{2} \mathrm{SN}$ functionalized $\mathrm{Ag}-\mathrm{Cu}$ is $5.3 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$, which is around 5 times larger than that for pristine $15 \mathrm{at} . \% \mathrm{Ag}-\mathrm{Cu}$ (Fig. 19). Electrochemical impedance spectroscopy (EIS) measurements were performed to explore the charge transfer processes on the surface of the different electrodes during the electrolysis of CO_{2}. The charge transfer resistance of the $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$ - functionalized electrodes is not substantially perturbed compared to that of the pristine bimetallic catalyst (Fig. 20). On the contrary, the resistance is significantly larger in the case of electrodes functionalized with 1-propanthiol and cysteamine indicating that the charge transfer is strongly affected; likely due to the strong hydrophobicity of the surface of the alkyl-functionalized catalyst.

Fig. $15 \mathbf{C O}_{2}$ RR performance of the functionalized Ag-Cu electrodes in a H-cell. (a), Linear scan voltammetry (LSV) curves measured for different samples: $\mathrm{N}_{2} \mathrm{SN}, \mathrm{N}_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{~N}, \mathrm{C}_{3}$ functionalized $\mathrm{Ag}-\mathrm{Cu}$ compared to pristine $(\mathrm{P}) \mathrm{Ag}-\mathrm{Cu}$ in $\mathrm{CO}_{2}-$ saturated $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ at electrochemical potential (V) from 0 to -1.4 V vs. RHE. Scan rate, $20 \mathrm{mV} \mathrm{s}^{-1}$. (b), Faradaic efficiency (FE) values for C_{2+} products on different samples at various potentials ranging from -0.3 to $-1.4 \mathrm{~V} v s$. RHE and measured in $0.5 \mathrm{M} \mathrm{KHCO}_{3}$. (c), $j-\mathrm{V}$ plots of the partial current densities for the C_{2+} products (ethylene and ethanol). (d), Relationships between the FE for C_{2+} and the total current density for all the catalysts (e), Selectivity for C_{2+} products over hydrogen based on the ratio in FEs of C_{2+} and hydrogen. The error bars in $\mathbf{b}-\mathbf{e}$ correspond to the standard deviation of three independent measurements.

Fig. 16 Comparisons of the Faradaic efficiencies on the different catalysts measured in the H -cell reactors. The Faradaic efficiency for the different products on $\mathrm{N}_{2} \mathrm{SN}$-(a), $\mathrm{N}_{3} \mathrm{~N}$-(b), $\mathrm{C}_{2} \mathrm{~N}$-(d) and C_{3}-(e) Ag -Cu electrodes, as well as pristine sample (c).

Fig. $17 \mathrm{CO}_{2} \mathrm{RR}$ performance in the H-cell reactors. a, b FE values for C_{1} products (a) and H_{2} (b) on the different catalysts at various potentials ranging from -0.3 to -1.4 V vs. RHE in $0.5 \mathrm{M} \mathrm{KHCO}_{3} . \mathrm{c}, \mathrm{j}-\mathrm{V}$ plots of the total current densities versus the RHE on different samples in $0.5 \mathrm{M} \mathrm{KHCO}_{3}$.

Fig. 18 CVs for different samples measured in $100 \mathrm{mM} \mathrm{HClO} 4+1 \mathrm{mM} \mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$.

Fig. 19 Partial C_{2+} products current density normalized to Cu ECSA for $15 \mathrm{at} . \% \mathrm{Ag}-\mathrm{Cu}$ and $\mathrm{N} 2 \mathrm{SN}-15 \mathrm{at} . \% \mathrm{Ag}-\mathrm{Cu}$ catalysts versus potential for $\mathrm{CO}_{2} \mathrm{RR}$ in H -cell.

Table 2. Summary of the XPS data for $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ at different reaction times. The atomic ratio N / Cu refers to the functionalization degree per Cu atom.

	$\mathbf{C u}(\mathbf{a t . \%} \mathbf{\%})$	\mathbf{N} (at.\%)	Ratios of $\mathbf{N} / \mathbf{C u}$
Before	9.98	6.28	0.63
$\mathbf{0 . 5} \mathbf{~ h}$	12.97	8.43	0.65
$\mathbf{1 ~ h}$	9.89	6.03	0.61
$\mathbf{2 4} \mathbf{~ h}$	18.53	10.56	0.57
$\mathbf{1 0 0} \mathbf{~ h}$	15.10	8.91	0.59

Fig. 20 Electrochemical impedance spectroscopy (EIS) measured for the different $\mathrm{Ag}-\mathrm{Cu}$ catalysts. The EIS spectra measured in the H -cell configuration for pristine (non-functionalized) 15% at. $\mathrm{Ag}-\mathrm{Cu}$ (gray), 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{2} \mathrm{SN}$ (purple), 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{3} \mathrm{~N}$ (blue), 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{C}_{2} \mathrm{~N}$ (green) and 15% at. $\mathrm{Ag}-\mathrm{Cu}-\mathrm{C}_{3}$ (orange). The EIS data were recorded in CO_{2}-saturated $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ solution.

To gauge the stability of the functionalization, we operated the electrodes at a potential of $-1.2 \mathrm{~V} v s$. RHE for more than 20 hours in the H-cell reactor, while recording the current density and continuously analyzing the products of the reaction (Fig. 21). The $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$-functionalized electrodes demonstrated stable performance with a retention of the current density of 94% and 91% respectively - sharply improved compared to that of pristine $\mathrm{Ag}-\mathrm{Cu}$ at 78%. The FE for $\mathrm{C}_{2}+$ of $\mathrm{N}_{2} \mathrm{SN}$ and $\mathrm{N}_{3} \mathrm{~N}$ functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes remains as high as 54% and 46.5% after 20 hours, which demonstrate that the selectivity for the reaction pathway on the
surface of the electrode is not modified during electrolysis. To further confirm the apparent stability of the functionalized electrode, we performed XPS spectroscopy to evaluate the $\mathrm{N}: \mathrm{Cu}$ ratio after $30 \mathrm{~min}, 1$ hour, 24 hours and 100 hours. The ratio is found to be virtually constant suggesting a robust grafting of the functional groups on the catalyst surface (Figs. 22 and 23, Table 3).

Fig. 21 Stability measurements of $\mathrm{N}_{2} \mathrm{SN}$-, $\mathrm{N}_{3} \mathrm{~N}$ - functionalized Ag -Cu compared with pristine Ag -Cu measured in the H cell reactors. The stability of $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{2} \mathrm{SN}, \mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{3} \mathrm{~N}$ and $\mathrm{Ag}-\mathrm{Cu}$ were obtained at -1.2 V vs. RHE without iR correction.

Fig. 22 X-ray photoelectron spectra of $\mathrm{N}_{2} \mathrm{SN}$ before and after $\mathrm{CO}_{2} R R$. The XPS data from the Cu 2 p (a), S 2 p (b) and N 1 s (c) regions were measured before and after operation up to 100 h at -1.2 V vs. RHE.

Fig. 23 Estimated atomic N / Cu ratio of the $\mathrm{N}_{2} \mathrm{SN}-\mathrm{Ag}-\mathrm{Cu}$ electrodes along the $\mathrm{CO}_{2} \mathrm{RR}$ operating time. The atomic N / Cu ratio of $\mathrm{Ag}-\mathrm{Cu}-\mathrm{N}_{2} \mathrm{SN}$ were estimated from the deconvoluted XPS spectra shown in Fig. 19.

Table 3. Summary of the Cu binding energy from the Auger $\mathrm{L}_{3} \mathrm{M}_{45} \mathrm{M}_{45}$ transition modes for pristine, $\mathrm{N}_{2} \mathrm{SN}-, \mathrm{N}_{3} \mathrm{~N}-, \mathrm{C}_{2} \mathrm{~N}-$, C_{3}-functionalized Ag - Cu samples and $\mathrm{H}_{2} \mathrm{O}_{2}$-oxidized Ag - Cu .

Samples	${ }^{\mathbf{1}} \mathbf{G}(\mathbf{e V})$	${ }^{\mathbf{3}} \mathbf{F}(\mathbf{e V})$
$\mathbf{A g - C u (P)}$	918.3	921.0
$\mathbf{N}_{\mathbf{2}} \mathbf{S N}$	915.8	918.4
$\mathbf{N}_{\mathbf{3}} \mathbf{N}$	916.0	918.7
$\mathbf{C} \mathbf{2 N}$	915.9	918.2
$\mathbf{C}_{\mathbf{3}}$	915.9	918.2
$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{- \mathbf { A g } - \mathbf { C u }}$	917.5	-

3.4.3 XAS and in-situ Raman analysis

Next, we sought to explain the fundamental mechanism responsible for the improved $\mathrm{CO}_{2} \mathrm{RR}$ properties using ex-situ X-ray photoelectron spectroscopy (XPS) and operando XAS. XPS was firstly used to characterize the surface composition and determine the oxidation state of Cu . From the Cu 2 p region, no significant change of the oxidation state of Cu can be detected from the functionalized catalysts (Fig. 24a left). For comparison, after exposure to $\mathrm{H}_{2} \mathrm{O}_{2}$, the electrodes are clearly oxidized as confirmed by the apparition of $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ signals at binding energy at 934.6 eV and the satellite peak at 942.6 eV , which is attributed to the formation of Cu^{2+48}. Our XPS results confirm that functionalization does not lead to a dramatic modification of the oxidation state of the surface of the Cu since there were no evident oxidation peaks in Cu 2 p . It is well-known that the small change of binding energy between Cu^{1+} and Cu^{0} makes the precise identification of Cu^{1+} impossible from the Cu 2 p regions ${ }^{10}$. To overcome this limitation, we therefore used the Cu Auger $\mathrm{L}_{3} \mathrm{M}_{45} \mathrm{M}_{45}$ transition to qualitatively discuss the presence of Cu^{1+} in functionalized $\mathrm{Ag}-\mathrm{Cu}$ as this mode is known to be more sensitive to the modification of the
electron density on the d-band of the metals ${ }^{49,50}$. The Cu Auger $\mathrm{L}_{3} \mathrm{M}_{45} \mathrm{M}_{45}$ transition arises from a single $\mathrm{L}_{3}(2 \mathrm{p} 3 / 2)$ core-hole decay via the Auger process involving two M_{45} (3d) electrons for the formation of a final $3 \mathrm{~d}^{8}$ configuration ${ }^{51-54}$. The right panel of Fig. 24a presents the two final-state terms splitting from $\mathrm{L}-\mathrm{S}$ coupling ${ }^{1} \mathrm{G}$ and ${ }^{3} \mathrm{~F}$, whose peak energy positions provide information on the valence configuration of $\mathrm{Cu}^{22,51}$. According to the previous investigations, the peak energy positions of ${ }^{1} \mathrm{G}$ for the different oxidation states copper are detected at $917.1,915.8$, and 918.0 eV for $\mathrm{CuO}, \mathrm{Cu}_{2} \mathrm{O}$, and Cu , respectively ${ }^{51-53}$. Such differences are mainly due to the modification of the 3 d and $\mathrm{O}_{2 \mathrm{p}}$ electron configurations ${ }^{54}$. Compared with Cu 0 , the ${ }^{1} \mathrm{G}$ peak in copper oxide is downshifted in energy and presents a broader shape, while the ${ }^{3} \mathrm{~F}$ peak is solely visible in the case of $\mathrm{Cu}^{0}{ }^{22,55}$. For pristine and C_{3} - and $\mathrm{C}_{2} \mathrm{~N}$ - functionalized $\mathrm{Ag}-\mathrm{Cu}$, we observed that the energy positions of the ${ }^{1} \mathrm{G}$ peak are located at 918.3 eV (pristine), $915.9 \mathrm{eV}\left(\mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{2} \mathrm{~N}\right)$, respectively, while the distinct ${ }^{3} \mathrm{~F}$ peak is detected at 918.2 eV for both $\mathrm{C}_{3}-$ and $\mathrm{C}_{2} \mathrm{~N}-\mathrm{Ag}-\mathrm{Cu}$, in agreement with the existence of Cu^{0} (Table 4). Conversely, in the case of the $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$ samples, the ${ }^{1} \mathrm{G}$ peak is identified at 915.8 and 916.0 eV , respectively, which is lower than that for Cu^{0} and Cu^{2+} and close to that of $\mathrm{Cu}^{1+}(915.8 \mathrm{eV})$. We also note that the ${ }^{3} \mathrm{~F}$ peak is also visible for both samples pointing out the presence of Cu^{0}. These results indicate that the valence state of the $\mathrm{N}_{2} \mathrm{SN}$ and $\mathrm{N}_{3} \mathrm{~N}$ samples may be $\mathrm{Cu}^{\delta+}$ with $0<\delta<1$.

Fig. 24 Physical characterizations of the functionalized electrodes using XPS and operando Raman and XAS spectroscopy.
(a), High-resolution spectra of the Cu 2 p regions and $\mathrm{Cu}_{3} \mathrm{M}_{45} \mathrm{M}_{45}$ Auger transition modes measured by ex-situ X-ray photoelectron spectroscopy (XPS) of pristine Ag-Cu sample (P), $\mathrm{H}_{2} \mathrm{O}_{2}$-treated $\mathrm{Ag}-\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{P}\right), \mathrm{C}_{3}-, \mathrm{C}_{2} \mathrm{~N}$-, $\mathrm{N}_{3} \mathrm{~N}$ - and $\mathrm{N}_{2} \mathrm{SN}$ functionalized Ag-Cu electrodes. (b), Ex-situ and operando Copper K-edge X-ray absorption near edge structure (XANES) spectra of pristine and functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes. Inset: Average oxidation state of copper for the corresponding electrodes. (c), Operando Cu K-edge XANES spectra of $\mathrm{N}_{2} \mathrm{SN}$ - functionalized Ag-Cu electrode during CO2RR. The
measurements were performed after holding the applied potential for 30 minutes. (d), Evolution of the Faradaic efficiency for C_{2+} and H_{2} measured at -1.2 V vs. RHE with the oxidation state of Cu . (e), Operando Raman spectra for pristine, $\mathrm{C}_{3}{ }^{-}$, $\mathrm{C}_{2} \mathrm{~N}-, \mathrm{N}_{3} \mathrm{~N}-$ and $\mathrm{N}_{2} \mathrm{SN}$-, functionalized Ag -Cu during CO2RR at a fixed potential of $-1.2 \mathrm{~V} v$. RHE. The spectra for all the other potentials are presented in Supplementary Fig. 15. (f), Relationship between the FE for C_{2+} products and the Raman peak areas of the frustrated rotational mode of CO at $280 \mathrm{~cm}^{-1}$, the $\mathrm{Cu}-\mathrm{CO}$ stretch at $365 \mathrm{~cm}^{-1}$ and the $\mathrm{C} \equiv \mathrm{O}$ stretch at 1900$2120 \mathrm{~cm}^{-1}$, respectively. (g), Relationship between the FE for C_{2+} molecules and the ratio of $\mathrm{CO}_{\text {atop }}$ and $\mathrm{CO}_{\text {bridge }}$ on different $\mathrm{Ag}-\mathrm{Cu}$ electrodes. The ratio was obtained from the integrated areas of the deconvoluted peaks of the Raman spectra (Fig. 29).

Table 4. Summary of the XANES data. E_{0} and corresponding oxidation states (δ) of Cu .

Samples	$\mathbf{C u}$ $\mathbf{f o i l}$	\mathbf{P}	$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{2}} \mathbf{N}$	$\mathbf{N}_{\mathbf{3}} \mathbf{N}$	$\mathbf{N}_{\mathbf{2}} \mathbf{S N}$	$\mathbf{C u}_{\mathbf{2}} \mathbf{O}$
	8979	8979.08	8979.1	8979.2	8979.7	8979.8	8980.5
$\mathbf{E}_{\mathbf{0}}$	0	+0.05	+0.07	+0.13	+0.47	+0.53	+1
$\boldsymbol{\delta}$							

To precisely evaluate the electronic states of copper on functionalized Ag-Cu electrodes and eliminate the air effect on the electrode, we then performed in-situ X-ray absorption near-edge spectroscopy (XANES). The absorption edges of functionalized catalysts reside between those of copper metal $\left(\mathrm{Cu}^{0}\right)$ and $\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{Cu}^{1+}\right)$ used as references (Fig. 24b). To better compare the influence of the different functional groups, we estimated the copper oxidation state as a function of copper K-edge energy shift (Fig. 24b). The oxidation state of copper in the $\mathrm{N}_{2} \mathrm{SN}$ and $\mathrm{N}_{3} \mathrm{~N}$ - functionalized $\mathrm{Ag}-\mathrm{Cu}$ was found to be +0.53 and +0.47 respectively - pointing out the withdrawing properties of the selected heterocycles (Table 5). Remarkably, $\mathrm{C}_{3}-$ and $\mathrm{C}_{2} \mathrm{~N}$ - functionalized samples displayed a minimal shift by comparing with pristine $\mathrm{Ag}-\mathrm{Cu}$ electrode and the Cu reference, suggesting the alkyl groups are not prone to modulate the oxidation state nor the coordination environment of Cu . To explore the stability of electron-withdrawing ability of the grafted heterocycles, we measured the oxidation state of Cu post CO 2 RR using in-situ XANES. After 30 min of operation at $-1.2 \mathrm{~V} v$ s. RHE in the testing cell, the oxidation state of copper was estimated be +0.51 (Inset Figs. 24 b and c). This value is similar to that obtained from the freshly prepared samples: +0.53 , which demonstrates the stability of the oxidation state of the functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes. Similarly, no obvious shift of the Cu K-edge was observed from the in-situ XANES measurements at increasing applied potential up to -1.2 V vs. RHE and the spectra virtually overlap. This confirms the robustness of the oxidation state of the Cu thanks to the stable attachment of the functional groups (Fig. 24c, and Fig. 25). To better understand the role of $\mathrm{Cu}^{{ }^{8+}}$ on the CO2RR properties, we investigated the influence of the copper oxidation state on the FE for C_{2+} and H_{2} (Fig. 24d). Remarkably, we identified a strong correlation between the oxidation state and the FE for C_{2}, which points out that the larger oxidation state of Cu benefits the $\mathrm{CO}_{2} \mathrm{RR}$ properties and the formation of C_{2+} products in line with recent findings from the literature ${ }^{51,}{ }^{56}$. To finally exclude any hydrophobicity effect on the enhanced selectivity for formation of C_{2+} products, we sought to prepare
functionalized electrodes with similar water contact angles as for pristine Cu counterpart. We identified $1,3,4-$ thiadiazole-2,5-dithiol, $\mathrm{N}_{2} \mathrm{SS}$ that shares the same thiadiazole structure, exhibits a water contact angle of 81° compared to 83.9° for pristine non-functionalized Cu . In H-cell configuration, the Faradaic efficiency for the formation of C_{2+} molecules on $\mathrm{N}_{2} \mathrm{SS}-\mathrm{Ag}-\mathrm{Cu}$ reaches 43.7% at -1.2 V vs. RHE compared to only 18.3% for $\mathrm{Ag}-$ Cu (Fig. 26). To further demonstrate that the water contact angle has limited influence on the improved C_{2+} selectivity, we plotted the Faradaic efficiency as function of the water contact angle. No relationship is clearly observed, emphasizing that the origin of the improved selectivity for C_{2+} is not primarily due to the surface properties of the Cu electrodes but rather the electron withdrawing nature of the aromatic heterocycles as evidenced by our operando X-ray absorption spectroscopy measurements (Figs 7, 26 and 27).

Table 5 Estimated ratios (in peak area) between the atop CO and the bridge CO obtained from the deconvoluted spectra. The data represents the average values obtained from two independent sets of samples.

Electrode	Ratio (atop/bridge)
$\mathbf{N}_{2} \mathbf{S N}$	0.51
$\mathbf{N}_{3} \mathbf{N}$	0.32
$\mathbf{C}_{2} \mathbf{N}$	2.78
\mathbf{C}_{3}	0

Fig. 25 Cu K-edge X-ray absorption near edge structure (XANES) spectra of the different Ag-Cu catalysts. Magnification of the operando Cu K-edge XANES spectra of $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrode during $\mathrm{CO}_{2} \mathrm{RR}$. The operando XANES measurements were performed after applying a fixed potential vs. RHE for 30 minutes.

Fig. 26 The Faradaic efficiency for the different products on N2SS functionalized $15 \mathrm{at} . \% \mathrm{Ag}-\mathrm{Cu}$ catalyst.

Fig. 27 The relationship between water contact angle and Faradaic efficiency of C_{2+} products in H -cell for $15 \mathrm{at} . \% \mathrm{Ag}$ $\mathrm{Cu}(\mathrm{P}), \mathrm{N}_{2} \mathrm{SN}, \mathrm{N}_{3} \mathrm{~N}, \mathrm{C}_{2} \mathrm{~N}, \mathrm{C}_{3}$ and $\mathrm{N}_{2} \mathrm{SS}$.

It is well known that the formation of multi-carbon products in $\mathrm{CO}_{2} \mathrm{RR}$ proceeds via the formation of the * CO intermediate, and its subsequent dimerization in $\mathrm{CO}=\mathrm{CO}$ or $* \mathrm{CO}-\mathrm{COH}$ intermediates ${ }^{57-59}$. To gain insight into the $\mathrm{C}-\mathrm{C}$ coupling mechanism on functionalized and pristine $\mathrm{Ag}-\mathrm{Cu}$ during $\mathrm{CO}_{2} \mathrm{RR}$, the surface of the catalysts was probed using operando Raman spectroscopy in order to ellucidate the interactions between the catalyst surface and the adsorbed *CO intermediate (Fig. 24e and Fig. 28, and Table 7). The presence of the surfaceabsorbed ${ }^{*} \mathrm{CO}$ was identified from the vibration modes at $\approx 280 \mathrm{~cm}^{-1}$ and $\approx 365 \mathrm{~cm}^{-1}$ that originate from the $\mathrm{Cu}-$ CO frustrated rotation and $\mathrm{Cu}-\mathrm{CO}$ stretch, respectively ${ }^{60,61}$. The broad band in the range of $1900-2120 \mathrm{~cm}^{-1}$ was assigned to the $\mathrm{C} \equiv \mathrm{O}$ stretch. To confirm that the detected signals are solely due to the $\mathrm{CO}_{2} \mathrm{RR}$, the Raman spectra were also recorded using Ar-saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ as a controlled experiment and no peaks were detected at these frequencies (Fig. 28f). The Raman vibration modes around $1900-2120 \mathrm{~cm}^{-1}$ have recently been the focus of several studies and there is currently a general agreement that the high frequency region ($>2000 \mathrm{~cm}^{-1}$) and the low frequency region (1900-2000 cm^{-1}) originates to atop-bound CO and bridge-bound CO . Atop $\left(\mathrm{CO}_{\text {top }}\right)$ and
bridge $\left(\mathrm{CO}_{\text {bridge }}\right)$ configurations correspond to a CO bound on top of one Cu atom and between two Cu atoms respectively ${ }^{50,} 62,63$. Compared to pristine as well as 1 -propanthiol- and cysteamine-functionalized electrodes, $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$-functionalized Ag-Cu exhibit the relatively intense signals at $365 \mathrm{~cm}^{-1}$ and $1900-2000 \mathrm{~cm}^{-1}$. Our systematic investigations revealed that the intensities of both regions are also found to increase with the overpotentials ${ }^{32}$ (Figs. 28a and b). Importantly, we observed that there is an obvious relationship between the peaks at $365 \mathrm{~cm}^{-1}$ and $1900-2100 \mathrm{~cm}^{-1}$ and the Faradaic efficiency towards the formation of C_{2+} products (Fig. 24f) by following literatures to fit these peaks area ${ }^{32,50}$. These results therefore point out the strong correlation between the density of adsorbed * CO on the catalyst surface and the formation of $\mathrm{C}-\mathrm{C}$ bonds in agreement with the $* \mathrm{CO}$ being the key intermediate involved in the dimerization reaction and the formation of C_{2+} products. We note that 1-propanethiol functionalized Ag-Cu electrodes display the most intense peak at $280 \mathrm{~cm}^{-1}$ whereas no peak are detected at $1900-2120 \mathrm{~cm}^{-1}$. This indicates the adsorbed * CO is not present in the form of $\mathrm{CO}_{\text {atop }}$ nor $\mathrm{CO}_{\text {bridge }}$ configurations. We speculate that the hydrophobic surface of the 1-propanethiol functionalized $\mathrm{Ag}-\mathrm{Cu}$ induces the existence of a high energy barrier for the protons to reach the surface of the catalyst that prevents the stabilization of the ${ }^{*} \mathrm{CO}$ in these bound configurations as previously proposed for other transition metals ${ }^{50}$. Interestingly, we observed a volcano-shaped relationship between the Faradaic efficiency for C_{2+} products and the ratio of atop-bound CO to bridge-bound CO on the surface of $\mathrm{Ag}-\mathrm{Cu}$ (Figs. 24g and 29). The Faradaic efficiency reaches a maximum for a ratio of $\mathrm{CO}_{\text {atop }}$ to $\mathrm{CO}_{\text {bridge }}$ of $0.4-0.5$ corresponding to thiadiazole and triazole functionalized catalysts, while the ratio decreases for 1-propanethiol and increases for pristine and cysteamine respectively. We hypothesized that the density of $\mathrm{CO}_{\text {atop }}$ and $\mathrm{CO}_{\text {bridge }}$ on the surface of the catalysts is influenced by the electron withdrawing ability of the heterocycles as suggested by the volcano shaped relationship between the oxydiation state of Cu and the ratio of $\mathrm{CO}_{\text {atop }}$ to $\mathrm{CO}_{\text {bridge }}$ (Fig. 30). Overall our ex-situ and operando characterizations of the modified bimetallic catalyst establish an obvious correlation between the electron withdrawing ability of the functional groups and the oxidation state of Cu , which translate into a larger concentration of adsorbed * CO on the electrode surface and ultimately a higher probability for $* \mathrm{CO}$ to dimerize.

Fig. 28 Operando Raman spectra of (a) $\mathrm{N}_{2} \mathrm{SN}$-, (b) $\mathrm{N}_{3} \mathrm{~N}$-, (c) $\mathrm{C}_{2} \mathrm{~N}$-, and (d) C_{3}-functionalized Ag-Cu electrodes compared with (e) pristine $\mathrm{Ag}-\mathrm{Cu} . \mathrm{ae}$, The operando Raman measurements were carried out between -0.7 V and -1.2 V vs. RHE in a CO_{2}-saturated KHCO_{3} solution. To confirm that the signals are solely coming from the $\mathrm{CO}_{2} \mathrm{RR}$, the $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ catalyst was also tested in an Ar saturated $\mathrm{K}_{2} \mathrm{SO}_{4}$ electrolyte solution (f).

Fig. 29 Deconvolution of the Raman signals around $2000 \mathrm{~cm}^{-1}$. Right panel: Operando Raman spectra centered around 2000 cm^{-1} representing the $\mathrm{C} \equiv \mathrm{O}$ stretch region on pristine and functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes. The asymmetric signals were deconvoluted into two components for the atop and the bridge CO using Lorentzian curves. The ratio of the intensities (in area) of the two bands is summarized in Supplementary Table 6. Left panel: Schematic representation and photograph of the operando setup.

Fig. 30 Relationship between the ratio of $\mathrm{CO}_{\text {atop }}$ and $\mathrm{CO}_{\text {bridge }}$ with the oxidation degree of Cu obtained from our XANES measurements.

3.4.4 CO2RR using a membrane-electrode-assembly (MEA)

To evaluate the potential of our approach for practical applications towards the electrosynthesis of C_{2+} products, we integrated the different functionalized bimetallic electrodes into $4 \mathrm{~cm}^{2}$ membrane-electrode-assembly (MEA) flow electrolyzers (Figs. 31 and 32). The synthesized liquid products at the cathode were collected by using a cold trap connected to the cathode gas outlet. We also analyzed the liquid products in the anolyte to detect liquid products that may have crossed over the membrane electrolyte. We firstly scrutinized the activity of $\mathrm{N}_{2} \mathrm{SN}$ functionalized $\mathrm{Ag}-\mathrm{Cu}$ in a MEA electrolyzer by flowing Ar (used as blank experiment) and CO_{2} in the cathode compartment (Supplementary Fig. 29) and found that the catalyst can convert CO_{2} when operating in a catholytefree MEA system. We then characterized the current-voltage response of all the functionalized catalysts between -2.8 V and -4.8 V and a constant flow of CO_{2} of 10 standard cubic centimeters per minute (sccm) (Fig. 33a). The total current for the different $\mathrm{Ag}-\mathrm{Cu}$ electrodes increased from $4 \times 10^{-2} \mathrm{~A}$ up to over 1.6 A . The $\mathrm{N}_{2} \mathrm{SN}$ functionalized electrodes displayed the largest specific current density for C_{2+} at $261 \mathrm{~mA} \mathrm{~cm}^{-2}$ together with the maximum FE for C_{2+} products and the lowest FE for H_{2} at $\sim 80 \%$ and 14%, respectively (Figs. 33b, 34a and 35a). Remarkably the selectivity for the C_{2+} products increase together with the electrolysis response when increasing the operating potential of the full cell. The catalytic activity towards the competitive HER concurrently decreases up to -4.55 V (Figs. 33 b and 35 c). Compared to pristine $\mathrm{Ag}-\mathrm{Cu}$, the FE for C_{2+} products from $\mathrm{N}_{2} \mathrm{SN}$ - and $\mathrm{N}_{3} \mathrm{~N}$ functionalized electrodes demonstrated an average enhancement for C_{2+} of 3.1 and 2.6 folds respectively over the extended range of full-cell potentials (Figs. 33c and 36). To further assess the performance of the functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes in the MEA devices, we calculated the ratio of $j_{C_{2+}}$ to $j_{C_{1}}$ for the different potential. We found that $\mathrm{Ag}-\mathrm{Cu}$ functionalized with thiadiazole displays the largest values and the ratio reaches at a maximum value of ≈ 10 at a current density of $261.4 \mathrm{~mA} \mathrm{~cm}^{-2}$ (Fig. 37). These results demonstrate that the controlled orientation of the reaction pathways towards the synthesis of ethanol and ethylene observed in the H -cell reactors can be transposed to the MEA devices (Fig. 31). We also found that the total FE for gaseous products gradually decreased with the increase of the full-cell voltage indicating a shift toward the formation of liquid products at high operating potential. The Faradaic efficiency for ethanol and n-propanol reached 16.5% and 6.1% at a voltage of -4.4 V (Fig. 34a)

Fig. 31 Photograph of a $4-\mathrm{cm}^{-2}$ membrane-electrode-assembly (MEA) cell.

Fig. 32 Schematic representation of the experimental setup for the CO_{2} electrolysis in a MEA electrolyzer. The geometric area of the cathode is $4 \mathrm{~cm}^{2}$, of which 45% is the gas channel while the rest 55% is the land area.

Fig. $33 \mathrm{CO}_{2}$ RR performance of the functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes measured in MEA electrolyzers. (a), Relationship between the current and cell voltage relationship of pristine, $\mathrm{C}_{3}-, \mathrm{C}_{2} \mathrm{~N}-, \mathrm{N}_{3} \mathrm{~N}-$ and $\mathrm{N}_{2} \mathrm{SN}$ - functionalized electrodes. The error bars represent the standard deviation of the current density of three independent samples during the entire operation and for each cell voltage. The $\mathrm{CO}_{2} \mathrm{RR}$ electrolysis was operated using CO_{2} with a flow rate of $10 \mathrm{sccm}, 0.1 \mathrm{M} \mathrm{KHCO} 3$ anolyte with a flow rate of 30 mL min-1. (b), Corresponding partial current density for the C_{2+} products. (c), Comparison of FEs for C_{2+} on the different Ag - Cu electrodes measured at full-cell potentials ranging between -3.5 and -4.8 V . (d), Evolution of the Faradaic efficiency for C_{2+} and H_{2} with the CO_{2} flow rate. (e), Evolution of the FEs and full-cell energy efficiency (EE) for C_{2+} as a function of specific current densities for C_{2+} on the $\mathrm{N}_{2} \mathrm{SN}$ - functionalized Ag - Cu electrode. The error bars represent the standard deviation of three independent samples measured under different current densities. (f), Comparison of the performance metrics of the MEA electrolyzers based on $\mathrm{N}_{2} \mathrm{SN}$-functionalized Ag - Cu cathodes with literature benchmark. For each report, the plotted values are those corresponding to the longest duration test ${ }^{32,65-67}$. (g), $\mathrm{CO}_{2} \mathrm{RR}$ performance of $\mathrm{N}_{2} \mathrm{SN}$-Ag-Cu catalyst at a full-cell potential of -4.55 V and with a 10 sccm feed in CO_{2} over 100 hours. The anolyte consisted in a $0.1 \mathrm{M} \mathrm{KHCO}_{3}$ solution with a flow rate of $30 \mathrm{ml} \mathrm{min}^{-1}$. The blue line represents the current density recorded during the extended $\mathrm{CO}_{2} \mathrm{RR}$ experiment (primary y axis). Each orange, gray, green and purple spheres represent the FEs for $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ averaged from three independent measurements (secondary y axis).

Fig. 34 Electrocatalytic CO_{2} RR properties of the MEA electrolyzers using the different Ag -Cu catalysts. The corresponding Faradaic efficiency for the gas and liquid products on $\mathrm{N}_{2} \mathrm{SN}-\mathrm{Ag}-\mathrm{Cu}(\mathrm{a}), \mathrm{N}_{3} \mathrm{~N}-\mathrm{Ag}-\mathrm{Cu}$ (b), $\mathrm{C}_{2} \mathrm{NAg}-\mathrm{Cu}$ (d), $\mathrm{C}_{3}-\mathrm{Ag}-\mathrm{Cu}$ (e) compared to pristine (c) catalysts at increasing cell voltages. The error bars represent the standard deviation of the measurements based on three independent samples.

Fig. $35 \mathrm{CO}_{2}$ electroreduction performance in the MEA electrolyzers. Faradaic efficiency for the $\mathrm{C}_{2+}\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right.$, npropanol and acetate) (a), $\mathrm{j}-\mathrm{V}$ plots of the partial current densities for the $\mathrm{C} 1\left(\mathrm{CO}, \mathrm{CH}_{4}\right.$ and HCOOH$)(\mathrm{b})$ and H_{2} products (c) on $\mathrm{N}_{2} \mathrm{SN}-\mathrm{Ag}-\mathrm{Cu}, \mathrm{N}_{3} \mathrm{~N}-\mathrm{Ag}-\mathrm{Cu}, \mathrm{C}_{2} \mathrm{~N}-\mathrm{Ag}-\mathrm{Cu}, \mathrm{C}_{3}-\mathrm{Ag}-\mathrm{Cu}$ compared to pristine measured with a 0.1 M KHCO 3 anolyte solution.

Fig. 36 Enhancement factor of FEC_{2+} for $\mathrm{N}_{2} \mathrm{SN}-\mathrm{Ag}-\mathrm{Cu}$ and $\mathrm{N} 3 \mathrm{NAg}-\mathrm{Cu}$ compared to pristine.

Fig. 37 Selectivity for C_{1-2+} hydrocarbons on the different electrodes in the MEA electrolyzers. The estimated ratio for jc_{2} and jc_{1} on the different $\mathrm{Ag}-\mathrm{Cu}$ electrodes measured with a $0.1 \mathrm{M} \mathrm{KHCO}_{3}$ anolyte solution.

To better understand the influence of operating conditions on the $\mathrm{CO}_{2} \mathrm{RR}$ performance of the MEA device, we varied the CO_{2} flow rate from 3 to 100 sccm at a constant full-cell potential of -4.55 V . When using $\mathrm{N}_{2} \mathrm{SN}$ functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes, the FE for ethylene reached a peak at 56% at $\sim 10 \mathrm{sccm}$ (Fig. 33d) together with a sharply reduced FE for H_{2} at only 15.2%. The selectivity for ethylene rapidly drops down to only $\sim 5 \%$ for a CO_{2} flow rate of 3 sccm , suggesting that the feed in CO_{2} is not sufficient to produce enough * CO to dimerize on the surface of the catalyst. The relationships between CO_{2} flow rates, cell voltages; Faradaic efficiencies for the main gas products $\left(\mathrm{H}_{2}, \mathrm{CO}\right.$ and $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)$ were explored and we found that the $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ decreases when increasing the CO_{2} flow rate and the optimal flow rate is 10 sccm even when operating under high voltage and high current
density (Fig. 38). Conversely, the Faradaic efficiency for H_{2} increases when increasing the CO_{2} flow rate, which further demonstrates that the decrease in the C_{2+} performance is not caused by the insufficient feed in CO_{2}. We also estimated the full-cell energy efficiency ($\mathrm{EE}_{\text {full-cell }}$) for $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ for the different operating potential. Both the FE and $\mathrm{EE}_{\text {full-cell }}$ values for C_{2+} products increased with the increase of the current density and achieved a maximum $\mathrm{FE}_{\mathrm{C} 2+}$ of $\approx 80 \pm 1 \%$ and an $\mathrm{EE}_{\text {full-cell }}$ of 20.3% at a specific current density larger than 260 $\mathrm{mA} \mathrm{cm}{ }^{-2}$ for the production of C_{2+} (Fig. 33e). By comparing the performance metrics of $\mathrm{N}_{2} \mathrm{SN}$-functionalized $\mathrm{Ag}-\mathrm{Cu}$ with previous literature benchmarks based on MEA devices, we observed that thiadiazole -functionalized $\mathrm{Ag}-\mathrm{Cu}$ allows achieving outstanding performance notably thanks to a high $\mathrm{CO}_{2}-$ to- C_{2+} conversion rate of 785 $\mu \mathrm{mol} \mathrm{h}{ }^{-1} \mathrm{~cm}^{-2}$ (Fig. 33f).

Fig. 38 The influence of CO_{2} gas flow rate on different products selectivity at different voltages. (a) $\mathrm{C}_{2} \mathrm{H}_{4}$, (b) CO and (c) H_{2}.

We finaly examined the stability of the $\mathrm{N}_{2} \mathrm{SN}$-functionzlized $\mathrm{Ag}-\mathrm{Cu}$ electrodes in a full-cell MEA electrolyzer under continuous operation at a CO_{2} flow rate of 10 sccm and a cell voltage of -4.55 V . The performance of the cell was found to be stable over 100 hours with an average FE of 51% for ethylene and an average current of around 1.6 A (Fig. 33 g). After 100 hours, the retention of the FE for ethylene and the current were estimated to be 48% and 1.58 A corresponding to retentions of 94% and 99% respectively. The stability of the $\mathrm{CO}_{2} \mathrm{RR}$ properties is further accompanied by a high stability of the catalyst morphology and microstructure (Fig. 39).

Fig. 39 SEM pictures of the $\mathrm{N}_{2} \mathrm{SN}-\mathrm{Ag}-\mathrm{Cu}$ catalyst after electrolysis in MEA.

Our study describes an original and robust molecular engineering strategy to tune the oxidation state of Cu electrodes via functionalization. We identified that strong electron withdrawing groups based on aromatic heterocycles can effectively orient the pathway of the $\mathrm{CO}_{2} \mathrm{RR}$ reactions towards the synthesis of C_{2+} molecules. Functionalization of the surface of a bimetallic $\mathrm{Ag}-\mathrm{Cu}$ catalyst with thiadiazole and triazole derivatives led to an enhancement of the $\mathrm{FE}_{\mathrm{C}_{2+}}$ up to $\approx 80 \pm 1 \%$, corresponding to ratios of $\mathrm{FE}_{\mathrm{C}_{2+}}$ to $\mathrm{FE}_{\mathrm{C}_{1}}$ and $\mathrm{FE}_{\mathrm{C}_{2+}}$ to $\mathrm{FE}_{\mathrm{H}_{2}}$ of 10 and 5.3 respectively. By combining Auger and XANES spectroscopy we identified that the superior performance towards the CO_{2}-to- $\mathrm{C}_{2}+$ conversion originates from the controlled oxidation state of $\mathrm{Cu}^{\delta+}$ atoms with $0<\delta<1$. The functionalized $\mathrm{Ag}-\mathrm{Cu}$ electrodes were found stable, which translates into a prolonged production of C_{2+} products for $>100 \mathrm{~h}$.

3.6 References

1. Bushuyev, O. S.. et al. What should we make with CO_{2} and how can we make it? Joule 2, 825-832 (2018).
2. Whipple, D. T.\&Kenis, P. J. Prospects of CO_{2} utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1, 3451-3458 (2010).
3. Ross, M. B.. et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal 2, 648658 (2019).
4. Ross, M. B.. et al. Electrocatalytic rate alignment enhances syngas generation. Joule 3, 257-264 (2019).
5. Ren, S.. et al. Molecular electrocatalysts can mediate fast, selective CO_{2} reduction in a flow cell. Science 365, 367-369 (2019).
6. Gu, J.. et al. Atomically dispersed Fe^{3+} sites catalyze efficient CO_{2} electroreduction to CO. Science 364, 1091-1094 (2019).
7. Liu, M.. et al. Enhanced electrocatalytic CO_{2} reduction via field-induced reagent concentration. Nature 537, 382-386 (2016).
8. Hori, Y., Murata, A.\&Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans1 85, 2309-2326 (1989).
9. Hoang, T. T.. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO_{2} to ethylene and ethanol. J Am Chem Soc 140, 5791-5797 (2018).
10. Li, Y. C.. et al. Binding site diversity promotes CO_{2} electroreduction to ethanol. J Am Chem Soc 141, 8584-8591 (2019).
11. Lee, S., Park, G.\&Lee, J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal 7, 8594-8604 (2017).
12. Chen, C.. et al. $\mathrm{Cu}-\mathrm{Ag}$ Tandem Catalysts for High-Rate CO_{2} Electrolysis toward Multicarbons. Joule 4, 1688-1699 (2020).
13. Clark, E. L., Hahn, C., Jaramillo, T. F.\&Bell, A. T. Electrochemical CO_{2} reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc 139, 15848-

15857 (2017).
14. Zhou, Y.. et al. Dopant-induced electron localization drives CO_{2} reduction to C_{2} hydrocarbons. Nat Chem 10, 974-980 (2018).
15. Buckley, A. K.. et al. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO_{2} Reduction at Modified Cu Surfaces. J Am Chem Soc 141, 7355-7364 (2019).
16. Han, Z.. et al. CO_{2} reduction selective for $\mathrm{C} \geq 2$ products on polycrystalline copper with N -substituted pyridinium additives. ACS Cent Sci 3, 853-859 (2017).
17. Cui, W. G.\&Hu, T. L. Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2003971 (2020).
18. Bai, S.. et al. Highly active and selective hydrogenation of CO_{2} to ethanol by ordered $\mathrm{Pd}-\mathrm{Cu}$ nanoparticles. J Am Chem Soc 139, 6827-6830 (2017).
19. Huang, J.. et al. Structural sensitivities in bimetallic catalysts for electrochemical CO_{2} reduction revealed by $\mathrm{Ag}-\mathrm{Cu}$ nanodimers. J Am Chem Soc 141, 2490-2499 (2019).
20. Varandili, S. B.. et al. Synthesis of $\mathrm{Cu} / \mathrm{CeO}_{2-\mathrm{x}}$ Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO_{2} Electroreduction. ACS Catal 9, 5035-5046 (2019).
21. Chou, T.-C.. et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO_{2} reduction to ethylene. J Am Chem Soc 142, 2857-2867 (2020).
22. Zhang, W.. et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO_{2} reduction. J Am Chem Soc 142, 11417-11427 (2020).
23. Yang, P.-P.. et al. Protecting copper oxidation state via intermediate confinement for selective CO_{2} electroreduction to $\mathrm{C}_{2}+$ fuels. J Am Chem Soc 142, 6400-6408 (2020).
24. Gao, D.. et al. Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via ElectrolyteDriven Nanostructuring. Angew Chem Int Ed 58, 17047-17053 (2019).
25. Wang, H.. et al. Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett 19, 3925-3932 (2019).
26. Cui, X.. et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat Catal 1, 385-397 (2018).
27. Copéret, C.. et al. Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angew Chem Int Ed 130, 6506-6551 (2018).
28. Copéret, C., Chabanas, M., Petroff Saint-Arroman, R.\&Basset, J. M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew Chem Int Ed 42, 156-181 (2003).
29. Pelletier, J. r. m. D.\&Basset, J.-M. Catalysis by design: Well-defined single-site heterogeneous catalysts. Acc Chem Res 49, 664-677 (2016).
30. Copéret, C.. et al. Bridging the Gap between Industrial and Well-Defined Supported Catalysts. Angew Chem Int Ed 57, 6398-6440 (2018).
31. Thevenon, A., Rosas-Hernández, A., Peters, J. C.\&Agapie, T. In-Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO_{2} Reduction to Ethylene. Angew Chem Int Ed 58, 16952-16958 (2019).
32. Li, F.. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509-513 (2020).
33. Rosen, B. A.. et al. Ionic liquid-mediated selective conversion of CO_{2} to CO at low overpotentials. Science 334, 643-644 (2011).
34. Cao, Z.. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO_{2} reduction to formate and carbon monoxide: surface organometallic chemistry. Angew Chem Int Ed 130, 5075-5079 (2018). 35. Lau, G. P.. et al. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J Am Chem Soc 138, 7820-7823 (2016).
36. Kim, C.. et al. Achieving selective and efficient electrocatalytic activity for CO_{2} reduction using immobilized silver nanoparticles. J Am Chem Soc 137, 13844-13850 (2015).
37. Wakerley, D.. et al. Bio-inspired hydrophobicity promotes CO_{2} reduction on a Cu surface. Nature Mater 18, 1222-1227 (2019).
38. Kim, C.. et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal 7, 779-785 (2017).
39. Fang, Y.\&Flake, J. C. Electrochemical reduction of CO 2 at functionalized Au electrodes. J Am Chem Soc 139, 3399-3405 (2017).
40. Zhong, Y.. et al. An Artificial Electrode/Electrolyte Interface for CO2 Electroreduction by Cation Surfactant Self-Assembly. Angew Chem Int Ed 132, 19257-19263 (2020).
41. Dena, A. S. A., Muhammad, Z. A.\&Hassan, W. M. Spectroscopic, DFT studies and electronic properties of novel functionalized bis-1, 3, 4-thiadiazoles. Chem Zvesti 73, 2803-2812 (2019).
42. Sherif, E.-S. M., Erasmus, R.\&Comins, J. Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1, 2, 4-triazole-5-thiol. J Colloid Interface Sci 306, 96-104 (2007).
43. Pan, Y.-C.. et al. 2-Amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole monolayers on copper surface: Observation of the relationship between its corrosion inhibition and adsorption structure. Corros Sci 73, 274-280 (2013).
44. Sherif, E.\&Park, S.-M. Effects of 2-amino-5-ethylthio-1, 3, 4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions. Electrochim Acta 51, 6556-6562 (2006).
45. Ren, D.. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal 5, 2814-2821 (2015).
46. Deng, Y.\&Yeo, B. S. Characterization of electrocatalytic water splitting and CO 2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal 7, 7873-7889 (2017).
47. Mallouk, T.. et al. 2-aminobenzenethiol functionalized Ag-decorated nanoporous Si photoelectrodes for selective CO2 reduction. Angew Chem Int Ed, (2020).
48. Dilimon, V., Denayer, J., Delhalle, J.\&Mekhalif, Z. Electrochemical and spectroscopic study of the self-
assembling mechanism of normal and chelating alkanethiols on copper. Langmuir 28, 6857-6865 (2012).
49. Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49, 13251334 (2017).
50. Fielicke, A., Gruene, P., Meijer, G.\&Rayner, D. M. The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry. Surf Sci 603, 1427-1433 (2009).
51. Arán-Ais, R. M.. et al. The role of in situ generated morphological motifs and Cu (i) species in $\mathrm{C}_{2}+$ product selectivity during CO2 pulsed electroreduction. Nat Energy 5, 317-325 (2020).
52. Favaro, M.. et al. Subsurface oxide plays a critical role in CO 2 activation by Cu (111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc Nat Acad Sci, 114, 6706-6711 (2017).
53. Pauly, N., Tougaard, S.\&Yubero, F. LMM Auger primary excitation spectra of copper. Surf Sci 630, 294299 (2014).
54. Tahir, D.\&Tougaard, S. Electronic and optical properties of $\mathrm{Cu}, \mathrm{CuO}$ and $\mathrm{Cu}_{2} \mathrm{O}$ studied by electron spectroscopy. J Phys Condens Matter 24, 175002 (2012).
55. Barman, S.\&Sarma, D. Investigation of the $\mathrm{L}_{3}-\mathrm{M}_{45} \mathrm{M}_{45}$ Auger spectra of $\mathrm{Cu}, \mathrm{Cu}_{2} \mathrm{O}$ and CuO . J Phys Condens Matter 4, 7607 (1992).
56. Raciti, D.\&Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett 3, 1545-1556 (2018).
57. Cheng, T., Xiao, H.\&Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Nat Acad Sci, 114, 17951800 (2017).
58. Kortlever, R.. et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6, 4073-4082 (2015).
59. Montoya, J. H., Shi, C., Chan, K.\&Nørskov, J. K. Theoretical insights into a CO dimerization mechanism. in CO2 electroreduction. J Phys Chem Lett 6, 2032-2037 (2015).
60. Chernyshova, I. V., Somasundaran, P.\&Ponnurangam, S. On the origin of the elusive first intermediate of. CO2 electroreduction. Proc Nat Acad Sci, 115, E9261-E9270 (2018).
61. Akemann, W.\&Otto, A. Vibrational modes of CO adsorbed on disordered copper films. J Raman Spectrose 22, 797-803 (1991).
62. Gunathunge, C. M.. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J Phys Chem C 121, 12337-12344 (2017).
63. Clark, R. J. H.\&Hester, R. E. Spectroscopy for surface science. John Wiley \& Sons (1998).
64. Gabardo, C. M.. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777-2791 (2019).
65. Merino-Garcia, I.. et al. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J CO2 Util 31, 135-142 (2019).
66. Ozden, A.. et al. High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Lett 5, 2811-2818 (2020).
67. Wang, X., et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 5(6), 478-486 (2020).

Chapter 4. Selective and energy-efficient electrosynthesis of ethylene via valence engineering of the $\mathbf{C u}$

 sites
4.1 Abstract

The electrosynthesis of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in Membrane-electrode-assembly (MEA) cells with high selectivity and large current density is a promising flow process strategy for the conversion of CO_{2} or CO into valuable products. Although considerable progress has been made in meeting industrial requirements in terms of Faradaic efficiency (FE) and formation rate, selectivity towards the formation of a single type of multi-carbon (C_{2+}) product has not been demonstrated to date. Here, we evaluated a library of aryl diazonium salts to functionalize Cu catalysts in order to elucidate the influence of Cu valence on the formation of multicarbon products during the $\mathrm{CO}_{2} \mathrm{RR}$. By combining density functional theory (DFT) calculations with operando Raman and X-ray absorption spectroscopy (XAS), we identified the role of the surface oxidation state of $\mathrm{Cu}^{\delta+}$ with $0<\delta<1$ on the selectivity and the formation rate of $\mathrm{C}_{2} \mathrm{H}_{4}$. As a result, we report a FE and a specific current density for $\mathrm{C}_{2} \mathrm{H}_{4}$ as large as $83 \pm 2 \%$ and $212 \mathrm{~mA} \mathrm{~cm}^{-2}$, respectively on partially oxidized $\mathrm{Cu}^{0.26+}$. This corresponds to an energy efficiency of 26.9% and an electrical power consumption (EPC) of $61.4 \mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$. The conversion performance was further improved by using a perfluorinated sulfonic acid (PFSA) ionomer to reach a record-high FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ of $89 \pm 3 \%$ at a specific current density of $536 \mathrm{~mA} \mathrm{~cm}^{-2}$. When coupled with an Ag-based MEA cell to generate CO from CO_{2} in a cascade flow process, an energy efficiency of $\sim 40 \%$ with a $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ of $86 \pm 2 \%$ was achieved, corresponding to a record low EPC of $25.6 \mathrm{kWh} \mathrm{N}^{-1} \mathrm{~m}^{-3}$.

4.2 Introduction

The global consumption of fossil fuels induces profound environmental repercussions and is responsible for colossal emission of $>35 \mathrm{Gt}$ of CO_{2} every year. The pledge of net zero emission by 2050 requires the development of economically viable technologies to reuse the emitted CO_{2} and close the carbon cycle. The electrochemical CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ provides a promising and sustainable route to convert CO_{2} into valuable chemicals and fuels when powered by renewable electricity ${ }^{1,2}$. Ethylene has been identified as a desirable multicarbon product of the $\mathrm{CO}_{2} \mathrm{RR}$ owing to its high commercial value and large market size with an annual global production of 140 million metric tons and a market value of 182 billion USD ${ }^{3}$. Techno-economic analyses (TEA) emphasized the necessity to operate $\mathrm{CO}_{2} \mathrm{RR}$ at specific current densities larger than 200 mA cm -2 while minimizing the power input (or cell voltage) ${ }^{4}$. Although the best reported performance of CO_{2}-to-ethylene electrocatalysis: $>80 \%$ Faradaic efficiency at $400 \mathrm{~mA} \mathrm{~cm}^{-2}$ in flow cell, has shorten the distance toward to industry development, the limited stability is still insufficient to compete with traditional ethylene production from fossil sources as well as bio-based ethylene ${ }^{3,5-8}$.

Zero-gap membrane electrode assembly (MEA) cells, comprising a cathode, membrane, and anode, offer the potential to achieve industry-relevant current densities with high selectivity and formation rates, while the continuous flow process provides a large mass transfer boundary layer with high local CO_{2} concentration near
the planar electrodes ${ }^{9-11}$. The absence of catholyte makes MEA cells more stable than traditional flow cells by mitigating the electrode flooding and the precipitation of salts, resulting in greater operating stability and reduced operational expenses (OPEX) ${ }^{11,12}$. The exploitation of MEA cells with high selectivity and high current density for the ethylene production as well as prolonged stability, is thus expected to lowers the threshold of economic viability to replace fossil sources for ethylene production. To date, the selectivity and the specific current density for ethylene in MEA systems are however limited to $<80 \%$ and $<200 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ (Refs. ${ }^{6,13}$). It has been reported that partially oxidized copper sites: $\mathrm{Cu}^{\delta+}, 0<\delta<1$ facilitate the conversion of CO_{2} to C_{2+} products by decreasing the energy barrier associated with the CO dimerization and the formation of $* \mathrm{OCCOH}$ intermediate ${ }^{14-18}$. Investigations of the role of $\mathrm{Cu}^{\delta+}$ proved to be tedious, while the intrinsic instability of $\mathrm{Cu}^{\delta+}$ species, especially at high cathodic potentials, leads to a rapid loss of performance ${ }^{19}$. The control of the valence of the Cu sites and the presence of Cu^{+}species on the surface of the electrodes has recently been a central focus in $\mathrm{CO}_{2} \mathrm{RR}$ notably via controlled oxidation, pulse polarization, or molecular doping ${ }^{6,11,16}$.

Aryl diazonium salts, as one of the classic electrophile reagents, the reduction of diazonium salts has been frequently employed for the covalent modification of surfaces since the first demonstration in 1992 ${ }^{20-24}$. The strong interfacial bonding of aryl groups on metal surface makes it much stable and widely applied in various fields, including corrosion protection ${ }^{24-26}$, biosensors' development ${ }^{27-29}$, antibacterial activity ${ }^{27,30}$ and drug delivery ${ }^{27,31,32}$. Compared with other electrophile reagents (thiols, carbene, and halogen molecules ${ }^{33-38}$) which usually makes copper fully oxidized, the electrophile ability of aryl diazonium salts can be tailored by easily substituting the hydrogen atoms on the aryl with different electro-withdrawing groups. When grafting different diazonium salts on copper, the oxidation degree of copper becomes controlled and keeps stable due to the strong interfacial bonding of aryl groups on metal surface ${ }^{24,27,31}$ Therefore, tailoring the oxidation state of copper by functionalizing different aryl diazonium salts becomes feasible and effective.

Herein, we report a functionalization strategy based on aryl diazonium salts used as electrophile reagents with a strong affinity for electron-rich copper metal. We identified that the nature of different substituted aryl groups can precisely tailor the oxidation state of surface Cu sites as confirmed by our density functional theory (DFT) calculations. We predict that controlled doping of Cu can facilitate $\mathrm{C}-\mathrm{O}$ bond breaking followed by $\mathrm{C}-\mathrm{H}$ hydrogenation of the $* \mathrm{CH}_{2} \mathrm{CHOH}$ intermediate, which favors the selective formation of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ over ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ during the $\mathrm{CO}_{2} \mathrm{RR}$. We corroborated the DFT results by integrating the aryl functionalized catalysts into an MEA flow cell. By tailoring the valence of the Cu sites, we achieved a $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ of 83% at a current density of $212 \mathrm{~mA} \mathrm{~cm}^{-2}$ for the electrosynthesis of ethylene from CO 2 with an optimal oxidation state for Cu of +0.26 . This corresponds to a $\sim 200 \%$ increase of the ethylene formation rate compared to the pristine Cu and a $\mathrm{C}_{2} \mathrm{H}_{4}$ vs. C_{2+} selectivity greater than 97% and a sustained stability for 120 hours. When fed with CO, the MEA cell demonstrated a FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ of $\sim 86 \%$ with a full cell energy efficiency of $\sim 40 \%$, setting a new benchmark for the formation of ethylene from CO.

4.3 Experimental methods

4.3.1 Materials

Catalyst preparation. The catalysts were electrodeposited at a constant current of $-15 \mathrm{~mA} \mathrm{~cm}^{-2}$ for 300 s on an acid-treated gas diffusion layer (Sigracet 22BB, for characterizations) with CO_{2} gas flow (60 sccm). The solution consisted of 0.1 M copper bromide (98%, Sigma-Aldrich), 0.2 M sodium tartrate dibasic dihydrate (purum pro analysis $\geq 98.0 \%$ non-aqueous titration (NT), Sigma-Aldrich), and 1 M KOH. Nafion 117 and anion exchange membrane (Sustainion® X37-50), gas diffusion layer, and titanium mesh were obtained from the Fuel Cell Store. All chemicals were used as received. All aqueous solutions were prepared using deionized water with a resistivity of $18.2 \mathrm{M} \Omega \mathrm{cm}^{-1}$

Functionalized Electrodes preparation. The Cu electrodes were functionalized using a aqueous solution of aryl diazonium salts consisting of 2-Methyl-4-(2-methylphenylazo)benzenediazonium salt (NN), 4-Amino-4'-methoxydiphenylamine-diazonium chloride (N), 2,5-Dimethoxy-4-([4-nitrophenyl]azo)benzenediazonium chloride hemi(zinc chloride) salt (NNN), 4-Methoxybenzenediazonium tetrafluoroborate $\left(\mathrm{OCH}_{3}\right)$, 4Bromobenzenediazonium tetrafluoroborate (Br), 4-Nitrobenzenediazonium tetrafluoroborate $\left(\mathrm{NO}_{2}\right)$ and 4-DiazoN, N-diethylaniline fluoroborate $\left(\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)$. The solutions were prepared with a fixed concentration of 3 mM concentration. The aryl diazonium salts were electrodeposited onto the Cu-GDL electrode using a three-electrode setup with $\mathrm{Cu}-\mathrm{GDL}$ electrode, $\mathrm{Ag} / \mathrm{AgCl}(3.5 \mathrm{M} \mathrm{KCl})$ and a Pt plate as working, reference and counter electrodes, respectively. A constant current of $0.70 \mathrm{~mA} \mathrm{~cm}^{-2}$ was applied for 100 s on the Cu -GDL electrode $\left(\sim 2.0 \times 2.0 \mathrm{~cm}^{2}\right.$ for MEA) by using a potentiostat (VSP potentiostat from Bio-Logic Science Instruments). After electrodeposition, the electrode was rinsed with DI water, dried under Ar, and stored in glovebox for further use.

Ionomer deposition. $\mathrm{Cu}-\mathrm{NN}$ electrodes were modified by spray-coating a PFSA solution. The PFSA solution were prepared by using 700 mg of ionomer (Nafion perfluorinated resin solution, product \#527084-25 ml purchased from Sigma Aldrich)) and 25 ml methanol (99.8%, anhydrous, Sigma Aldrich). The optimal loading with ionomer was achieved by tuning the spray-coating conditions in order to reach a desired loading of 1.75 mg cm^{-2}. Samples were dried for at least 24 h at room temperature in a vacuum chamber before operation.

Materials characterization. A field emission scanning electron microscope (TESCAN Mira3) was employed to observe the morphology of samples. Aberration-corrected high-resolution (scanning) TEM imaging (HR(S)TEM), energy-dispersive X-ray spectroscopy (EDS) and spatially-resolved electron energy-loss spectroscopy (SR-EELS) were performed using a FEI Titan Cubed Themis microscope which was operated at 80 kV . The Themis is equipped with a double Cs aberration corrector, a monochromator, an X-FEG gun, a super EDS detector, and an Ultra High Resolution Energy Filter (Gatan Quantum ERS) which allows for working in Dual-EELS mode. HR-STEM imaging was performed by using high-angle annular dark-field (HAADF) and annular dark-field
(ADF) detectors. SR-EELS spectra were acquired with the monochromator excited allowing an energy resolution of 1.1 eV with an energy dispersion of $0.4 \mathrm{eV} /$ pixel. X-ray photoelectron spectroscopy (XPS) measurements were carried out on Thermo Electron ESCALAB 250 System using Al K α X-ray radiation (1486.6 eV) for excitation. Raman measurements were conducted using a Renishaw in Via Raman microscope and an $\times 50$ objective (Leica) equipped with a 633 nm laser. Operando Raman measurements were carried out using a modified liquidelectrolyte flow cell using a 20 s integration time and averaging 10 scans per region. The spectra were recorded and processed using the Renishaw WiRE software (version 4.4). $\mathrm{Ag} / \mathrm{AgCl}(3.5 \mathrm{M} \mathrm{KCl})$ and a Pt plate were used as the reference and counter electrodes, respectively.

X-ray absorption spectroscopy (XAS). Ex situ X-ray absorption spectra at the copper K-edges and Operando X-ray absorption spectroscopy (XAS) measurements at the copper K-edges were collected at ALBA Synchrotron Radiation Facility (Barcelona) on beamline CLAESS and SOLEIL Synchrotron Radiation Facility (Saclay) on beamline SAMBA, respectively. Measurements were performed mainly in fluorescence mode, but transmission XAS data were also collected for comparison.

In SOLEIL Synchrotron Radiation Facility (Saclay), the beamline is equipped with a sagittally Si (111) monochromator at the Cu K-edge for energy selection. The beam size was $1 \times 0.5 \mathrm{~mm}$. The signals were collected in fluorescence mode using a 13 -channel Ge detector. The intensity of the incident radiation was measured with an ionization chamber (I_{0}) filled with an $\mathrm{N}_{2}(500 \mathrm{mbar}) / \mathrm{He}(500 \mathrm{mbar})$ mixture. Two additional ionization chambers filled with $1700 \mathrm{mbar}^{2} \mathrm{~N}_{2}$ (in I_{1} chamber) and an $\operatorname{Ar}(150 \mathrm{mbar}) / \mathrm{N}_{2}(850 \mathrm{mbar})$ mixture (in I_{l} chamber) were used for measurements in transmission mode in the case of the reference samples.

The X-ray absorption spectroscopy (XAS) measurements were performed in ALBA Synchrotron Radiation Facility (Barcelona). The intensities of the incident radiation and transmitted radiation were measured with ionization chamber detectors I_{0} and I_{l} filled with pure $\mathrm{N}_{2}\left(I_{0}\right.$ chamber) or $70: 30 \mathrm{~N}_{2}$ and Kr mixture (I_{l} chamber). Fluorescence data were collected using energy selective 6-channel Si drift detector. Si (111) monochromator was used for energy selection. XAS data for Cu foil, $\mathrm{Cu}_{2} \mathrm{O}$, and CuO reference samples were also collected for comparison and data alignment.

For the XAS studies, Cu was firstly electrodeposited on gas diffusion layer (GDL, Sigracet 22 BB , Fuel Cell Store) used as gas diffusion electrode (GDE) and then functional solutions were drop-coated on the catalyst side, while the other side of the GDL was covered with polyamide tape. The GDL was then taped on a graphite foil and subsequently, the electrode was mounted in our home-built single compartment cell, where the samples on graphite foil acted as a working electrode. Pt mesh and $\mathrm{Ag} / \mathrm{AgCl}$ were used as counter and reference electrodes, respectively. The applied potential was controlled with BioLogic potentiostat. As for the electrolyte, we used an aqueous solution of CO_{2}-saturated $0.5 \mathrm{M}_{\mathrm{KHCO}}^{3}$ that was continuously circulated through the cell using a peristaltic pump. The electrolyte was continuously purged with CO_{2} with a flow rate of $20 \mathrm{ml} / \mathrm{min}$. All
measurements were performed at constant potentials of $-0.98 \mathrm{~V},-0.93 \mathrm{~V},-0.88 \mathrm{~V}$ and -0.83 V vs. RHE. Timeresolved spectra under $\mathrm{CO}_{2} \mathrm{RR}$ conditions were acquired every 12-15 min until no further changes were observed.

Data alignment and normalization of the X-ray absorption near edge structure (XANES) spectra were carried out using the Athena software. Fitting of the Cu K-edge extended X-ray absorption fine structure (EXAFS) spectra $\chi(\mathrm{k}) \mathrm{k}^{2}$ of the catalysts was carried out in R -space in the range from $\mathrm{R}_{\min }=1.0 \AA$ up to $\mathrm{R}_{\max }=2.7 \AA$. The Fourier transforms were carried out in the k-range from $3.0 \AA^{-1}$ to $10.0 \AA^{-1}$ with a k-weighting of 1,2 and 3 . Fitting parameters were the coordination numbers N , interatomic distances R , disorder factors σ^{2} for $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{Cu}$ paths, as well as the corrections to the photoelectron reference energies $\Delta \mathrm{E}_{0}$. Amplitude reduction factor $\mathrm{S}_{0}{ }^{2}=0.94$ was determined from the fitting of EXAFS spectra for Cu foil.

Computational details.

Based on density functional theory, all calculations in this paper are performed by Vienna Ab -initio simulation software package (VASP) ${ }^{71}$ using the projected- augmented-wave (PAW) method ${ }^{72}$ and the Perdew-BurkeErnzerhof (PBE) exchange correlation functional ${ }^{42}$. The energy cutoff was set to 400 eV and the Brillouin zone was sampled by a Gamma $1 \times 1 \times 1$ K-point grid for structural optimization, while the $3 \times 3 \times 1$ K-point grid was used for electronic state analysis. During structure optimization, the position of all the atoms except the bottom layer were relaxed and convergence criterion for the maximum force and energy on each atom was set to $-0.05 \mathrm{eV} / \mathrm{A}^{\circ}$ and $10^{-4} \mathrm{eV}$, respectively. In order to accurately describe the weak interactions, the dispersion-corrected DFT-D3 method ${ }^{42}$ was employed to consider the van der Waals (vdW) interaction. To simulate the catalyst model in theory calculations, we designed a (2 x 2) super cell Cu (111), including 4 metal atoms in x direction, 4 metal atoms in y direction and 3 layers in z direction. Periodic boundary conditions were used in all directions and $20 \AA$ of vacuum layer was used in the z direction to separate the slabs. The configuration and the surface coverage of functional groups was set to be 20% in the model of modified Cu catalysts according to the characterization results from reaction mechanism and experiments. The two uppermost slab layers and the adsorbates are allowed to relax.

Theoretically valence analysis the theoretically valence of copper was calculated using the Bader Charge Analysis script written by Henkelman and co-workers ${ }^{73}$. The valence state of surface Cu atoms were evaluated according to the number of electrons obtained by the grafted aryl diazonium salts. We calculate the electronic charge (NCharge) of aryl diazonium salt bonded Cu atom by using the formal Bader charge from the outermost valence electron number (NValence) of Cu atom (1 for Cu) to subtract the calculated Bader charge of Cu (NBader), as follows ${ }^{6,14,18}$:

NCharge $=$ NValence-NBader

After functionalizing with different aryl diazonium salts, the valences of bonded Cu atoms are characterized by positive charges with the values of $+0.149 \mathrm{e},+0.206 \mathrm{e},+0.219 \mathrm{e},+0.260 \mathrm{e},+0.497 \mathrm{e},+0.630 \mathrm{e}$ and +0.787 e for $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{OCH}_{3}, \mathrm{~N}, \mathrm{NN}, \mathrm{NNN}, \mathrm{Br}$ and NO_{2} functional groups, respectively.

The $\mathbf{C O} / \mathbf{C O}_{2}$ adsorption energy over functionalized $\mathbf{C u}$ The adsorption energy of a $\mathrm{CO} / \mathrm{CO}_{2}$ molecule over a Cu surface in the presence and absence of functional groups was calculated by Equation:

$$
\begin{equation*}
E a d=E_{(C O, s l a b)}-E_{(s l a b)}-E_{(C O, g a s)} \tag{2}
\end{equation*}
$$

where $E(c o, s l a b)$ represents the total energy for a CO molecule over the Cu slab; Eslab is the total energy of the bare slab and $\mathrm{E}(\mathrm{co}$, gas) is the carbon monoxide gas phase energy. Here, the more negative value of the adsorption energy represents a stronger binding strength of the CO molecule. The same condition on CO_{2} adsorption energy calculations.
The reaction energy of 2CO* dimerization over functionalized Cu To theoretically investigate the OC-CO coupling energy barriers on different Cu surface, a climbing image nudged elastic band (CI-NEB) method ${ }^{74}$ was used to explore the transition state, followed by the dimer method to converge the saddle point within $0.05 \mathrm{eV} / \AA$. Four windows are inserted between the initial state (IS) and the final state (FS) to find the transition state (TS) when calculating the CO-CO coupling process on both pure Cu and $\mathrm{Cu}-\mathrm{NN}$. At all intermediate and transition states, we applied a solvated surface with one layer of water molecules via the Neugebauer and Scheffler method to take the effect of solvation into account: five water molecules are added near the surface ${ }^{6,14,18,74,75}$ Since Goodpaster, Norskov, Goddard, Neurock, and others have widely explored and simulated electric fields and charging effects by different methods ${ }^{76-79}$. In this work, we applied the Neugebauer and Scheffler method to include an applied electric field $(-0.8 \text { to } 0.8 \mathrm{~V} / \AA)^{79}$ which was parallel to the vacuum layer to examine how an applied electric field may influence the selectivity of ethylene and ethanol in the presence of aryl diazonium salt (NN). According to the standard hydrogen electrode, the Gibbs free energy can be calculated as,

$$
\begin{equation*}
\Delta \mathrm{G}=\Delta \mathrm{E} _\mathrm{DFT}+\Delta \mathrm{E} _\mathrm{ZPE}-\mathrm{T} \Delta \mathrm{~S} \tag{3}
\end{equation*}
$$

where $\mathrm{T}=298.15 \mathrm{~K}, \Delta \mathrm{E}, \Delta \mathrm{E} Z \mathrm{PE}$ and $\Delta \mathrm{S}$ are the total electron energy difference, zero-point energy difference and entropy change, respectively. This formula was proposed by Nørskov et al., since the entropy change is small, its effect can be ignored.
The relationship between Cu valence and CO_{2} adsorption energy To understand how the NN -bonded Cu atom affects the valence of neighboring Cu atoms and the related CO_{2} adsorption energy on differently neighboring Cu atoms, we took aryl diazonium salt (NN) functionalized Cu catalyst as an example to evaluate their relationships by a larger surface structure model. A (3x3) super cell $\mathrm{Cu}(111)$, including 6 metal atoms in x direction, 6 metal atoms in y direction and 3 layers in z direction was adopted as a computational model. A total of 10 kinds of CO_{2} adsorption models with different distances ($\mathrm{C}-\mathrm{Cu}$, the C here refers to C in the CO_{2} molecular) were constructed, and the distance between NN -bonded Cu atom and C atom of CO_{2} molecule is $2.597 \sim 9.556$ Å.
Electrochemical in H-Cell and MEA configuration. All electrochemical measurements were carried out at ambient temperature and pressure using a VSP electrochemical station from Bio-Logic Science Instruments equipped with a 5 A booster and FRA32 module. The cell voltages reported in all figures were recorded without iR correction. All the potentials in the H-cell were converted to values with respect to the RHE potential using:

$$
\begin{equation*}
E_{\mathrm{RHE}}=E_{\mathrm{Ag} / \mathrm{AgCl}}{ }^{+}+0.197 \mathrm{~V}+0.0591 * \mathrm{pH} \tag{4}
\end{equation*}
$$

In the H -cell configuration, $\mathrm{Ag} / \mathrm{AgCl}(3.5 \mathrm{M} \mathrm{KCl})$ and a Pt plate were used as reference and counter electrodes respectively. The electrolyte consisted in a 0.5 M KOH solution (99.9%, Sigma Aldrich), which was saturated with alternatively $\mathrm{CO}_{2}(\geq 99.998$, Linde) or $\mathrm{Ar}(5.0$, Linde). Prior to any experiment, the anolyte and catholyte solutions were saturated by bubbling CO_{2} or Ar for at least 20 min .

The MEA electrolyzer (Dioxide Materials) was composed of the Cu cathode, a Ti-IrO X_{x} mesh anode and an anion exchange membrane (AEM, Sustainion® X37-50, Fuel cell store). The anode and cathode flow fields are made of titanium and stainless steel with geometric active areas of $4 \mathrm{~cm}^{2}$ respectively. The anode was prepared by depositing $\mathrm{IrO}_{\mathrm{x}}$ on a titanium support ($0.002^{\prime \prime}$ ' thickness, Fuel Cell Store) by a dip coating followed by thermal annealing. Briefly, the titanium mesh was firstly degreased with acetone and DI water, then etched in a 6 M HCl (Reagent Grade, Bioshop) solution heated to $80^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ for 45 min before dip coating. The solution used for dip coating consisted of 30 mg of $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ (Alfa Aesar) dissolved in 10 mL of an iso-propanol solution with 10% concentrated HCl . The etched titanium mesh was dipped into the IrCl_{3} solution, dried in an oven at $100{ }^{\circ} \mathrm{C}$ for 10 min before calcination in air at $500^{\circ} \mathrm{C}$ for 10 min . The dipping and calcination process was repeated until a suitable loading was achieved $\left(2 \mathrm{mg} \mathrm{cm}^{-2}\right)^{119}$.

The AEM was firstly placed between the anode and cathode flow fields and then assembled together. The flow fields were mainly responsible for the effective supply in aqueous anolyte solution and humidified CO_{2} over the respective surfaces of anode and cathode electrodes. The anode and cathode gaskets were placed between the flow fields and the respective electrodes to ensure proper sealing. An anion exchange membrane (Sustainion ${ }^{\circledR}$ X37-50) (Dioxide Materials) was activated in 1 M aqueous KOH solution for at least 24 hours, washed with deionized water and used as the anion-exchange membrane (AEM). A $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ anolyte solution was circulated through the anode compartment of the electrolyzer with the constant flow rate of $30 \mathrm{ml} / \mathrm{min}$ via a peristaltic pump, while CO_{2} was supplied to the cathode side with a constant flow rate of 10 standard cubic centimeters per minute (sccm). After three-minutes of initial operation, a full-cell potential of -3.0 V was applied to the electrolyzer and the potential then was gradually increased with increments of -0.10 V or -0.05 V . The current was stabilized for 15-20 min between two voltage increments.

CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ measurements in the cascade MEA system

An Ag electrode was used to convert CO_{2} into CO in $0.1 \mathrm{M} \mathrm{KHCO}_{3}$ solution. The MEA cell possessed the same geometric active area of $4 \mathrm{~cm}^{2}$. The first MEA setup was operated at -3.8 V with a CO_{2} inlet flow rate of 10 sccm . The outlet of the first MEA setup was connected to a CO_{2} capture solution using a $30 \mathrm{wt} \%$ ethanolamine aqueous solution. Purified CO was then supplied to the second MEA cell for conversion of CO to $\mathrm{C}_{2} \mathrm{H}_{4} .1 \mathrm{M} \mathrm{KOH}$ was used as the anolyte, and the CO-to-ethylene conversion was evaluated at different potentials from -2.0 to -3.0 V.

Quantification of the $\mathbf{C O}_{2} \mathbf{R R}$ products. The electrochemical data were recorded while simultaneously collecting the $\mathrm{CO}_{2} \mathrm{RR}$ gas products by using an automatic sampler connected to the cathode outlet. A cold trap was used a collect the liquid products before the sampler. For each applied potential, the gas products were collected at least 3 times with proper time intervals. The gas alliquots were then injected into an online gas chromatograph (Agilent, Micro GC-490) equipped with a TCD detector and Molsieve 5A column continuously. Hydrogen and argon (99.9999%) were used as the carrier gases. Liquid products were quantified by 1H NMR spectroscopy (600 Mhz Avance III Bukrer with a cryorobe Prodigy TCI) using deionized water with 0.1% (w/w) of DSS (Sodium trimethylsilylpropanesulfonate) like internal standard for the quantification of the ethanol and formate. An 1D sequence water suppression with excitation sculpting with gradients(zgesgp) was used for the acquisition (Number of scan $=32$, Delay D1 $=30 \mathrm{~s}$). Owing to the liquid product crossover, the FE values of the liquid products were calculated based on the total amount of the products collected on the anode and cathode sides during the same period.

Stability measurements in the MEA configuration. For the stability tests, the MEA electrolyzer was operated at a constant voltage of -3.55 V with a continuous feed in CO_{2}. The gas products were collected at frequent time intervals and FE values were calculated from the average value obtained from three successive injections. As for the liquid products, the total liquid products were collected at the end of the experiments.

Faradaic Efficiency, Selectivity, Energy Efficiency and Energy power consumption Calculations. The Faradaic efficiency (FE, \%) of each gas product was calculated as follows:

$$
\begin{equation*}
F E_{\text {gas }}=g_{i} \times v \times \frac{z_{i}}{R T} F P_{0} \times \frac{1}{I_{\text {total }}} \times 100 \% \tag{5}
\end{equation*}
$$

The Faradaic efficiency (FE, \%) of each liquid product was calculated as follows:

$$
\begin{equation*}
F E_{\text {liquid }}=l_{i} \times \frac{z_{i}}{Q_{\text {total }}} F \times 100 \% \tag{6}
\end{equation*}
$$

The formation rate (R) for each species (i) was calculated as follows:

$$
\begin{equation*}
R_{i}=\frac{Q_{\text {total }} \times F E_{i}}{96485 \times z_{i} \times t \times S} \tag{7}
\end{equation*}
$$

The single-pass conversion rate ($\mathrm{SPC}, \%$) of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ was calculated as follows:

$$
\begin{equation*}
S P C=\frac{C_{C 2 H 4} \times \text { flow rate }_{\text {outlet }}}{C_{C_{02} \times \text { flow rate }_{\text {inlet }}}} \times 100 \tag{8}
\end{equation*}
$$

The full-cell energy efficiencies (EE, \%) was calculated as follows:

$$
\begin{equation*}
E E=\frac{\left(1.23-E_{i}\right) \times F E_{i}}{E_{\text {cell }}} \tag{9}
\end{equation*}
$$

The selectivity (\%) of ethylene was calculated as follows:

$$
\begin{equation*}
\text { Selectivity }_{C 2 \mathrm{H} 4}=\frac{2 R_{C 2 \mathrm{H} 4}}{R_{\mathrm{CO}}+R_{\mathrm{HCOOH}}+2 R_{C 2 H}+2 R_{C 2 H 5 O H}} \tag{10}
\end{equation*}
$$

The electrical power consumption (EPC, kWh) characterizes the amount of electric energy (typically expressed in kWh) that is required for producing $1 \mathrm{Nm}^{3}$ of product gas, and it was calculated as follows:

$$
\begin{equation*}
E P C=\frac{E_{\text {cell }} \times n \times F}{F E \times V_{m}} \tag{11}
\end{equation*}
$$

where g_{i} represents the volume fraction of gas product i; v represents the gas flow rate at the outlet in sccm; z_{i} represents the number of electrons required to produce one molecule of product $i ; I_{\text {total }}$ represents the total current; l_{i} represents the number of moles of liquid product $i ; Q_{\text {total }}$ represents the charge passed while the liquid products are being collected; $C_{\mathrm{C} 2 \mathrm{H} 4}$ and $C_{\mathrm{CO} 2}$ represents the concentrations of $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO_{2} measured by online GC. $P_{0}=$ $1.01 \times 105 \mathrm{~Pa}, T=273.15 \mathrm{~K}, F=96,485 \mathrm{C} \mathrm{mol}^{-1}$ and $R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} ; t$ represents the electrolysis time (h); S represents the geometric area of the electrode $\left(\mathrm{cm}^{2}\right) ; E_{i}$ represents the thermodynamic potential (versus RHE) for $\mathrm{CO}_{2} \mathrm{RR}$ to species i and $E_{\text {cell }}$ represents the cell voltage in two-electrode setup (-1.15 V for CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$, and -1.06 V for $\mathrm{CO}-$ to $-\mathrm{C}_{2} \mathrm{H}_{4}$); V_{m} is the molar volume of ideal gas under normal conditions.

4.4 Results and discussion

4.4.1 Density functional theory calculations

We first carried out Bader charge analysis to investigate the impact of the electron-withdrawing ability of the substituted aryl groups on the valence of Cu based on the functionalization mechanisms (Fig.1a, and Supplementary Figs. 1 and 2). Our calculations indicate that the nature of different substituents on the phenyl group can finely tailor the theoretical valence of diazotized Cu atoms ${ }^{39,40}$ (Fig. 1b, Supplementary Figs. 3 to 5 and Table 1). Our findings suggest that the nature of the substituents on the phenyl ring is to modulate the local electron density on copper and thereby precisely tune the oxidation state of both functional groups bonded Cu atoms and the neighboring Cu atoms (Fig. 1c). Consequently, new interfaces between $\mathrm{Cu}^{\delta+}$ and Cu^{0} regions are created in the aryl diazonium bonded copper system($0<\delta<1$) (Fig. 1c), a motif analogous to the famous $\mathrm{Cu}_{2} \mathrm{O} / \mathrm{Cu}$ catalyst proposed by Goddard group14. To clear how the functional group affects the oxidation state of Cu atoms and regulate the CO_{2} reduction, the adsorption energy of CO_{2} on different $\mathrm{Cu}^{\delta+}(\delta=0,0.10,0.12,0.15$ and 0.18) atoms were investigated based on the same Cu-NN catalyst system (Fig. 1c, Supplementary Fig. 6 and Table 2). And we found that the CO_{2} adsorption energy gradually increased with the closer distance of $\mathrm{Cu}^{\delta+}$ atoms to $\mathrm{Cu}-$ NN atom. The nearest $\mathrm{Cu}^{0.18+}$ atom showed the largest CO_{2} adsorption energy of -0.468 eV among all $\mathrm{Cu}^{\delta+}$ $(\delta=0,0.10,0.12,0.15$ and 0.18$)$ atoms while the farthest Cu 0 atom had the lowest one. It means that the CO_{2} activation and further reduction reaction (CO dimerization) are much easier to conduct on the nearest $\mathrm{Cu}^{0.18+}$ atom instead of the farthest Cu^{0} atom in $\mathrm{Cu}-\mathrm{NN}$ catalyst. The lower energy barrier of CO dimerization on $\mathrm{Cu}-\mathrm{NN}$ catalyst than pristine Cu (Fig. 1d, Supplementary Figs. 7 to 11 and Table 3) also proves that the CO dimerization prefers to proceed on the interface of $\mathrm{Cu}^{\delta+} / \mathrm{Cu}^{0}$ than $\mathrm{Cu}^{0} / \mathrm{Cu}^{0}$ in $\mathrm{Cu}-\mathrm{NN}$ catalyst (Fig. 1e), which is consistent with the classic $\mathrm{Cu}_{2} \mathrm{O} / \mathrm{Cu}$ catalyst proposed by Goddard et al1 ${ }^{4}$ that the interface of $\mathrm{Cu}^{+} / \mathrm{Cu}^{0}$ promotes the C_{2+} production by decreasing the reaction energy. In general, the grafted electro-withdrawing ability of aryl
diazonium salts on copper improves the oxidation state of part copper atoms and create the new interface region of $\mathrm{Cu}^{\delta+} / \mathrm{Cu}^{0}$ and thereby promote C_{2+} production. Moreover, the highest adsorption energy of CO on $\mathrm{Cu}-\mathrm{NN}$ among all functional groups also proves that CO dimerization on $\mathrm{Cu}-\mathrm{NN}$ is enhanced by the stronger binding energy of CO compared to pure Cu (Supplementary Fig. 12 and Table 4).

Since ethylene and ethanol are generally considered to share the same initial reaction pathway, starting from * COCOH but branching off from the $* \mathrm{CH}_{2} \mathrm{COH}$ intermediate ${ }^{41}$. To get insight into the ethylene vs. ethanol selectivity, we explored the role of the oxidation state of $\mathrm{Cu}^{8+}(\delta=0,0.149,0.206,0.219,0.260,0.493,0.630$ and 0.787 for pristine $\mathrm{Cu}, \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{OCH}_{3}, \mathrm{~N}, \mathrm{NN}, \mathrm{NNN}, \mathrm{Br}$ and NO_{2}, respectively) on the free energy of the successive intermediates along with the ethylene $\left({ }^{*} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right.$) and ethanol $\left({ }^{*} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$ pathways (Supplementary Figs. 13 to16). Our results reveal a lowest free energy on $\mathrm{Cu}-\mathrm{NN}\left(\mathrm{Cu}^{0.26+}\right)$ for ${ }^{*} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ (ethylene pathway) than for ${ }^{*} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (ethanol pathway). These findings indicate that NN grafted Cu with the oxidation state of $\delta=$ 0.26 favors the formation of the ${ }^{*} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ intermediate by breaking the $\mathrm{C}-\mathrm{O}$ bond instead of the direct hydrogenation of the C-H bond to form $* \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{41}$ (Fig.1f, Supplementary Figs. 13 to 16 and Table.5). NN functionalized Cu displayed the lowest free energy of -1.625 eV towards ethylene among all catalysts, suggesting a largest selectivity towards the formation of ethylene (Fig.1f). The retained overall trends of a smaller free energy of producing ethylene $\left(\mathrm{O}^{*}+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right)$ than ethanol $\left({ }^{*} \mathrm{OCHCH}_{3}\right)$ under a series of different external electric fields also reflect that NN functionalized copper has the higher selectivity towards ethylene than ethanol production ${ }^{18}$ (Supplementary Fig. 17 and Table 6). Meanwhile, the free energy of hydrogen evolution reaction (HER) on both bare Cu and $\mathrm{Cu}-\mathrm{NN}$ were also evaluated, and we found that the free energy of HER on $\mathrm{Cu}-\mathrm{NN}$ was higher than bare Cu (Supplementary Fig. 18 and Table.7). It means that grafting NN on Cu can not only promotes CO dimerization but also suppress the HER. Using these results as guidelines, we anticipated that the functionalization of copper with substituted phenyl groups induces the formation of $\mathrm{Cu}^{8+} / \mathrm{Cu}^{0}$ interface on Cu electrodes, which not only benefits for the formation of multi-carbon products compared to Cu^{0} but also leads to high selectivity towards ethylene over ethanol.

Fig. 1 Density functional theory calculations. (a) Molecular structures of different diazonium salts. (b) The relationship between the theoretical valence of the Cu sites and the electro-withdrawing ability of different substitutes on phenyl. (c) The relationship among the distance of the nearby Cu atoms to the $\mathrm{Cu}-\mathrm{NN}$ atom, the theoretical valence of nearby Cu atoms and the related CO_{2} adsorption energy on nearby Cu atoms. Inset: the model of CO_{2} molecular adsorbed on Cu^{0} and nearby $\mathrm{Cu}^{\delta+}(0<\delta<1)$ atoms. (d) Energy profiles for initial states (ISs), transition states (TSs), and final states (FSs) of CO dimerization on Cu and $\mathrm{Cu}-\mathrm{NN}$. (e) The schematic of CO dimerization on nearby Cu^{8+} and Cu^{0} atoms in NN functionalized copper slab (The blue ball is NN functionalized Cu atom). (f) Gibbs free energy difference associated with the ethylene and ethanol pathways on $\mathrm{Cu}-\mathrm{X}\left(\mathrm{X}\right.$ refers to $\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups), respectively.

4.4.2 Catalyst synthesis and characterization

In light of our numerical simulations, we sought to fabricate a series of copper catalysts via electrodeposition on a gas diffusion layer (GDL). The Cu catalysts were subsequently modified with aryl diazonium salts and labeled hereafter $\mathrm{Cu}-\mathrm{X}$ where X represents the grafted aryl groups (Fig. 1a). The reactivity of aryl diazonium salts on copper follows two mechanisms: a direct attachment of the phenyl groups or the formation of new azo groups ${ }^{24,42-}$ ${ }^{45}$ (Supplementary Figs. 1 and 2). Based on our XPS analyses, we confirmed that the grafting mechanism involves the formation of azo bonds as evidenced by the presence of the signal at 400 eV . Signals from the $\mathrm{N}=\mathrm{N}$ bonds were detected on all functionalized copper catalysts, including $\mathrm{Cu}-\mathrm{Br}$ and $\mathrm{Cu}^{-} \mathrm{OCH}_{3}$, with an estimated $3: 2$ molar ratio of $\mathrm{Br} / \mathrm{OCH}_{3}$ to azo. (Supplementary Fig. 19 and Supplementary Table 8). The morphology and crystal structure of functionalized Cu catalyst do not substantially change after the modification with diazonium salts, suggesting functionalization does not induce amorphization of the Cu surface (Figs. 2a, b and Supplementary Figs. 20 to 22). In particular, high-resolution electron microcopy analyses showed the presence of a continuously
functionalized layer at the surface of the catalysts with a thickness of about 5-8 nm (Figs. 2a, b and Supplementary Fig. 23a). In addition, based on our EELS analyses (Figs. 2b and Supplementary Fig. 23b), we confirmed the presence of C and N in the functionalized layer, which highlights the successful grafting of diazonium molecules at the surface of the Cu catalyst. To further improve the gas and ion transport to the active sites in the MEA cell, a perfluorinated sulfonic acid (PFSA) ionomer was spray-coated on the catalyst (Supplementary Fig. 24). The use of ionomers has been recently introduced to promote gas, water, and ion transport due to their hydrophobic and hydrophilic functionalities and ion transport domains, respectively, ${ }^{7,46-48}$. The presence of the PFSA ionomer was further confirmed by its characteristic Raman signatures at 733,1005 and $1130 \mathrm{~cm}^{-1}$, which are associated with the - CF_{2}, $\mathrm{C}-\mathrm{C}$, and $-\mathrm{SO}_{3}$ vibrations modes, respectively ${ }^{7}$ (Supplementary Fig. 25) ${ }^{7}$. Energy-dispersive X-ray spectroscopy (EDX) elemental mapping further supports the uniform distribution of ionomer on the surface of $\mathrm{Cu}-\mathrm{NN}$ catalyst (Supplementary Fig. 26).

To elucidate the relationship between the molecular doping properties of the aryl groups and the behavior of the functionalized catalysts properties, we systematically evaluated the $\mathrm{CO}_{2} \mathrm{RR}$ properties in a zero-gap MEA cell using a $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ anolyte and 10 sccm of CO_{2} as feed for the cathode. Compared to pristine (i.e. nonfunctionalized) Cu , all the $\mathrm{Cu}-\mathrm{X}$ electrodes exhibited improved Faradaic efficiency for ethylene (Fig. 2c and Supplementary Fig. 27 and Supplementary Table 9). We found a volcano relationship between the FE of $\mathrm{C}_{2} \mathrm{H}_{4}$ ($\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$) and the applied potential and the $\mathrm{Cu}-\mathrm{NN}$ catalyst exhibits the highest $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ at 83% for a full cell potential of -3.55 V . To explore the influence of NN thickness on $\mathrm{CO}_{2} \mathrm{RR}$ performance, we prepared and examined different $\mathrm{Cu}-\mathrm{NN}$ samples with different thickness by controlling the concentration of aryl diazonium salt. When we plotted the experimental $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO Faradaic efficiency versus the thickness of NN, we obtained a volcano plot that peak with an outstanding $\mathrm{C}_{2} \mathrm{H}_{4}$ Faradaic efficiency of $83 \pm 2 \%$ at a thickness of $5 \sim 8 \mathrm{~nm}$ (Supplementary Fig. 28). Differently, the FE of CO showed a trend of first increasing at a thinner thickness of NN and then decreasing at 5 nm thickness. It indicates that both too thin and too thick NN film were not conductive to *OC-CO* coupling in the $\mathrm{CO}_{2} \mathrm{RR}$ process.
To investigate the correlation between the $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ and the oxidation state of different diazonium salts functionalized copper, we plotted the experimental $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ against the valence of the Cu sites predicted by our DFT calculations. We found a volcano trend that peaks at 83% at an average Cu valence of +0.26 , corresponding to the $\mathrm{Cu}-\mathrm{NN}$ electrodes (Fig. 2d). We also observed a strong correlation between the ratio of $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ to $\mathrm{FE}_{\mathrm{C2H5OH}}$ as a function of the calculated theoretical valence, confirming the influence of the valence on the selectivity of ethylene over ethanol (Supplementary Fig. 29). A FEC2H4-to-FE C2H5OH ratio as high as 38 is obtained on $\mathrm{Cu}-\mathrm{NN}$ and agrees with our DFT predictions that Cu^{8+} triggers the formation of ethylene rather than ethanol (Supplementary Figs. 29a and b). The performance of $\mathrm{Cu}-\mathrm{NN}$ and pristine Cu were further increased in the presence of PFSA ionomer, and the Faradaic efficiency for ethylene reached $89 \pm 3 \%$ and $48 \pm 4 \%$ at a specific current density of $\mathrm{C}_{2} \mathrm{H}_{4}$ of $536 \mathrm{~mA} \mathrm{~cm}^{-2}$ and $269 \mathrm{~mA} \mathrm{~cm}^{-2}$, respectively (Supplementary Figs. 30 and 31). To gauge the stability of our functionalization strategy, we operated the MEA cell at a full cell voltage of -3.55 V
for 120 h using $\mathrm{Cu}-\mathrm{NN}$ as $\mathrm{CO}_{2} \mathrm{RR}$ catalyst. We obtained a stable current at approximately 1 A with an average FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ of 79% corresponding to a retention of 95% in a neutral medium (Fig. 2e). Furthermore, to examine the stability of functional group (NN) on copper, we also characterized and analyzed the surface of $\mathrm{Cu}-\mathrm{NN}$ catalyst after 24 hours reaction (hereafter aCu-NN) by using Raman and HRTEM. Compared to before reaction, the specific peaks of aromatic rings $(\sim 1600 \mathrm{~cm}-1)$ were still kept on aCu-NN catalyst, which means that the functional group (NN) was stable during the reaction (Supplementary Fig. 32). The high-resolution electron microcopy analyses also presented an intactly and continuously functionalized layer at the surface of aCu-NN catalyst with a thickness of about 4-8 nm, which was similar to the unreacted sample, indicating that the excellent stability of aryl diazonium salt (NN) on copper without changing the surface coating morphology during $\mathrm{CO}_{2} \mathrm{RR}$ process.
Next, we sought to evaluate the selectivity, the energy efficiency (EE) and the electrical power consumption (EPC) for the production of $\mathrm{C}_{2} \mathrm{H}_{4}$ in a MEA cell. Compared to other literature benchmarks ${ }^{6,7,49-52}$, both $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts demonstrated improved selectivity towards ethylene and higher energy efficiency at the same specific current density of $\sim 200 \mathrm{~mA} \mathrm{~cm}^{-2}$ (Figs. 2 f and g, Supplementary Table 10). Remarkably, the EPC for the formation of ethylene on $\mathrm{Cu}-\mathrm{NN}$ is 25% lower compared to the best reported catalyst tested in the same device configuration, suggesting a lower threshold to meet industrial requirements (Supplementary Table 10). To confirm the improvement of the intrinsic $\mathrm{CO}_{2} R R$ properties after aryl functionalization, we finally estimated the electrochemically active surface area (ECSA) of pristine $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts by using the Pb underpotential deposition method (PbUPD) (Supplementary Fig. 33a and Supplementary Table 11). The ECSA-normalized partial current densities for $\mathrm{C}_{2} \mathrm{H}_{4}$ measured in the MEA cell are $96 \mathrm{~mA} \mathrm{~cm}^{-2}$ and 212 $\mathrm{mA} \mathrm{cm}{ }^{-2}$ for $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer, which are ~ 2 and ~ 4.5 times higher than in the case of pristine Cu , respectively (Supplementary Fig. 33b). To exclude no preference of aryl diazonium groups grafting on different active sites, we also functionalized both $\mathrm{Cu}(111)$ and $\mathrm{Cu}(100)$ single crystals with the same geometric area and the same loading amount of aryl diazonium group of NN , and compared their surface coverage by examining their electrochemically active surface areas. As shown in Supplementary Fig. 34 and Table 12, the surface coverage of NN on $\mathrm{Cu}(111)$ and $\mathrm{Cu}(100)$ single crystals are 20.6% and 21.8%, with the estimated ECSA of 1.20 $\mathrm{cm}^{2}, 1.27 \mathrm{~cm}^{2}, 0.95 \mathrm{~cm}^{2}$ and $0.99 \mathrm{~cm}^{2}$ for $\mathrm{Cu}(111), \mathrm{Cu}(100), \mathrm{Cu}(111)-\mathrm{NN}$ and $\mathrm{Cu}(100)-\mathrm{NN}$ catalysts, respectively, which are close to the surface coverage of 18.5% on electrodeposited $\mathrm{Cu}-\mathrm{NN}$. It means that functional groups have no preference when modifying on different active sites.

ifferent Cu-X catalysts measured in MEA flow cells. X refers to $\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups. (a) HR-TEM image, (b) the corresponding N, C and Cu EELS elemental maps and corresponding ADF image taken from a section of Cu surface on the NNfunctionalized Cu electrode. (c) Comparison of FEs for ethylene on the different Cu electrodes measured at full-cell potentials ranging from -3.0 to -4.0 V and measured in $0.5 \mathrm{M} \mathrm{KHCO}_{3}$. (d) The relationship between $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ and the theoretical valences of the Cu sites on the different catalysts. (e) CO2RR performance of $\mathrm{NN}-\mathrm{Cu}$ at a full-cell potential of -3.55 V and with a 10 sccm feed in CO 2 over 120 hours. The anolyte consisted in a $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ solution circulating at a flow rate of $30 \mathrm{ml} \mathrm{min}^{-1}$. The blue line represents the current recorded during the extended CO2RR experiment (primary y axis). The empty orange symbols represent the FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ averaged from three independent measurements (secondary y axis). Comparison of the selectivity (f), energy efficiency (\mathbf{g}) and electric power consumption (h) for $\mathrm{C}_{2} \mathrm{H}_{4}$ based measured on the different $\mathrm{Cu}-\mathrm{X}$ cathodes with literature benchmarks for MEA electrolyzers. For each reference, the plotted values are those corresponding to the reported best performance. The error bars in \mathbf{c} and \mathbf{d} correspond to the standard deviation of three independent measurements.

4.4.3 Ex-situ and operando investigations

To investigate the impact of the aryl functionalization on the oxidation states of copper, we first performed exsitu X-ray photoelectron spectroscopy (XPS) on the different $\mathrm{Cu}-\mathrm{X}$ catalysts. When examining the Cu 2 p spectra, the absence of satellites confirms that there is no Cu^{2+} (Supplementary Fig. 35). As it is difficult to distinguish the $\mathrm{Cu}+$ from the Cu from the Cu 2 p spectra, we examined the LMM Auger signals from freshly prepared $\mathrm{Cu}-\mathrm{X}$ samples to precisely evaluate the oxidation state of copper ${ }^{53}$. According to the deconvolution of the Auger LMM
spectra, we found that the $\mathrm{Cu}-\mathrm{NO}_{2}$ surface has the largest ratio of Cu^{+}to Cu and the average oxidation state is estimated to be +0.75 , while $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ has the smallest oxidation state at $\delta=0.13$ (Supplementary Table 13). Overall, our Auger analyses qualitatively agree with the results from DFT calculated theoretical valence.

Fig. 3 XAS, Auger and operando Raman characterizations. (a) The copper $L M M$ Auger spectra of the $\mathrm{Cu}-\mathrm{X}$ electrodes. The amounts of $\mathrm{Cu}_{2} \mathrm{O}$ and Cu contributions were estimated from the integrated area of the corresponding curves. (b) Copper K-edge XANES spectra of $\mathrm{Cu}-\mathrm{X}$ catalysts after being electrochemically reduced. Inset: average oxidation state of copper in Cu -X obtained from copper K-edge XANES. The edge position of each sample is determined from the intercept of the main edge and pre-edge contributions. The error bars represent the standard deviation of three separate measurements for each sample. (c) The relationship between the FE for ethylene, the oxidation state of copper in $\mathrm{Cu}-\mathrm{X}$ and the ratio of H / L CO* obtained from the operando Raman spectra of the Cu-X electrodes at -0.88 V versus RHE. H and L refer high frequency and low frequency modes. (d) The correlations between the $\mathrm{FE}_{\mathrm{CO}}$, the $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ and the operando Raman heatmaps of $\mathrm{Cu}-\mathrm{NN}$ electrode and pristine Cu measured from -0.88 V to $-0.38 \mathrm{~V} v s$. RHE. Only the CO region is examined here $\left(1900-2200 \mathrm{~cm}^{-1}\right)$. The error bars in $\mathbf{b}, \mathbf{c}, \mathbf{d}$ and \mathbf{e} correspond to the standard deviation of three independent measurements.

We then carried out X-ray absorption near-edge spectroscopy (XANES) on the Cu-X catalysts to assess the Cu oxidation state. Before testing, a negative potential (-0.7 to -2.0 V versus reversible hydrogen electrode (RHE), $60 \mathrm{mV} \mathrm{s}^{-1}, 3$ cycles) was applied on $\mathrm{Cu}-\mathrm{X}$ samples to exclude oxygen-containing species. The absorption edges of all $\mathrm{Cu}-\mathrm{X}$ samples reside between those of pristine copper $(\mathrm{Cu} 0)$ and Cu 2 O used as a reference $\left(\mathrm{Cu}^{+}\right)(\mathrm{Fig} .3 \mathrm{~b}$ and Supplementary Fig. 36). To obtain a direct comparison of the oxidation state of copper in the different $\mathrm{Cu}-\mathrm{X}$ catalysts, we plotted the copper oxidation state as a function of energy shift of the Cu K-edge (Fig. 3b inset). From the linear fit of the positions for Cu 0 and $\mathrm{Cu}^{+}\left(\mathrm{Cu}_{2} \mathrm{O}\right)$, we determined the average oxidation state of the $\mathrm{Cu}-$ X catalysts to range between +0.13 to +0.75 as a function of the electron-withdrawing ability of substituted phenyl groups. $\mathrm{Cu}-\mathrm{NN}$ exhibits an oxidation state of $\delta=0.27$, which remarkably closes to the calculated theoretical valence of copper ($\delta=0.26$) (Supplementary Table 14). To further explore the stability of $\mathrm{Cu}^{\delta+}$ species on $\mathrm{Cu}-\mathrm{NN}$, we performed operando X-ray absorption spectroscopy (XAS) at applied potentials of $-0.93 \mathrm{~V},-0.88 \mathrm{~V}$, and -
0.83 V vs. RHE (Supplementary Figs. 37 and 38). Close examination of the XAS spectra suggests a minimal perturbation of the oxidation state of Cu during the CO2RR. We determined the average oxidation states of copper in $\mathrm{Cu}-\mathrm{NN}$ to be $+0.25,+0.23$, and +0.19 at $-0.93 \mathrm{~V},-0.88 \mathrm{~V}$, and -0.83 V vs. RHE, respectively close to that obtained from our ex-situ analyzes (Supplementary Tables 15 and 16).

To increase our understanding of the role of different functional groups in promoting the formation of ethylene, we studied the adsorbed CO* on the surface of the $\mathrm{Cu}-\mathrm{X}$ catalysts using operando Raman spectroscopy (Supplementary Figs. 39 and 40). According to literatures, the LFB-CO* has previously been attributed to adsorbed CO* on top of terrace-like sites and related to OC-CO coupling and ethylene production ${ }^{54,55}$, whereas the presence of the HFB-CO* peak at $2087 \mathrm{~cm}^{-1}$ is ascribed to adsorbed CO on isolated defect-like sites and more related to gaseous CO production according to previous operando measurements on well-defined systems ${ }^{56-58}$. Therefore, we examined the high-frequency band (HFB-CO*) and the low-frequency band CO* (LFB-CO*) of CO* at $\sim 2087 \mathrm{~cm}^{-1}$ and $\sim 2060 \mathrm{~cm}^{-1}$, respectively ${ }^{54,59,60}$ (Fig. 3c). These bound CO* configurations were identified and quantified using operando Raman spectroscopy for the different $\mathrm{Cu}-\mathrm{X}$ catalysts at a fixed potential of -0.88 V vs. RHE (Supplementary Fig. 41 and Supplementary Table 17) ${ }^{6,54,61,62}$. We found that the HFB-CO*-to-LFBCO^{*} ratio on all $\mathrm{Cu}-\mathrm{X}$ catalysts are larger compared with bare Cu , and presents a clear linear correlation with the average oxidation state of copper (Fig. 3c). The change of the ratio of HFB-CO*-to-LFB-CO* on $\mathrm{Cu}-\mathrm{X}$ catalysts derives from the tailored binding energy of CO* by functional groups (Supplementary Fig. 12) that changes the vibrational signals of CO* at low-wave number region, thereby reflecting different adsorbed sites on copper and resulting in different adsorbed $\mathrm{H} / \mathrm{L}-\mathrm{CO}$ * ratios. Our investigations indicate that the average oxidation state of copper should be neither too high nor too low. We found a volcano-shaped relationship between the ethylene selectivity and the HFB-CO*-to-LFB-CO* ratio on the $\mathrm{Cu}-\mathrm{X}$ surfaces, which highlights the importance of the balance between terrace-like and defect-like sites on Cu for the adsorption of CO * and the promotion of the OC-CO coupling. We note that $\mathrm{Cu}-\mathrm{NN}$ seats near to the top of the volcano, which further points out to a possible stabilization of HFB-CO* relative to LFB-CO* on mildly oxidized $\mathrm{Cu}^{8+}(0<\delta<1)$.
We compared the operando Raman spectra of $\mathrm{Cu}-\mathrm{NN}$ and pristine Cu catalysts (Fig. 3d) for different potentials. The Raman heat map of the $\mathrm{Cu}-\mathrm{NN}$ and pristine Cu revealed a clear enhancement of the signals from adsorbed CO* in the case of $\mathrm{Cu}-\mathrm{NN}$, which qualitatively indicates that larger amounts of CO^{*} intermediates are readily available for the further C-C coupling. We also found that $\mathrm{Cu}-\mathrm{NN}$ displays strong HFB-CO* and LFB-CO* signals for potentials between -0.48 V and -0.7 V vs. RHE up to -0.88 V vs. RHE, while no signals can be detected from pristine Cu (Fig. 3e). This points out to a greater energy barrier to produce CO * intermediates, thus limiting the formation of C_{2+} products. As the final evidence, we plotted the FE for CO and $\mathrm{C}_{2} \mathrm{H}_{4}$ as functions of the potential to visualize the intertwining between the Raman signatures of adsorbed $\mathrm{CO} *$ and the selectivity for C_{2+} products (Figs. 3d and e). To exclude the influence of interactions between CO_{2} and " N " atoms from aryl diazonium salts ($\mathrm{N}, \mathrm{NN}, \mathrm{NNN}, \mathrm{NO}_{2}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$), the related aryl diazonium salts functionalized copper was exposed with CO_{2} atmosphere. Since diazonium salts $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ contains a more nucleophilic nitrogen atom
(tertiary amine) compared to $\mathrm{N}, \mathrm{NN}, \mathrm{NNN}$, and NO_{2} diazonium salts, we decided to investigate the reactivity of diazonium salts $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{NN}, \mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Cu}-\mathrm{NN}$ and pristine Cu by using CO_{2}-temperature programmed desorption (TPD). Firstly, we tested the thermogravimetric analysis (TGA) and found $\mathrm{Cu}-\mathrm{N}_{(}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Cu}-\mathrm{NN}$ and pristine Cu kept stable at the range of $50-200{ }^{\circ} \mathrm{C}$ (Supplementary Fig. 42a). Therefore, we tested CO_{2}-temperature programmed desorption (TPD) with $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{Cu}-\mathrm{NN}$ and pristine Cu catalysts at the stable temperature range of 50 to $200{ }^{\circ} \mathrm{C}$ to observe their interactions with CO_{2}. As shown in Supplementary Fig. 42b, there is no any CO_{2} absorption peak on pristine Cu at the temperatures from $50-200{ }^{\circ} \mathrm{C}$, which means that no interaction happened between CO_{2} and pristine Cu at this temperature range. Compared to pristine Cu , both $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{Cu}-\mathrm{NN}$ displayed a small peak at $\sim 68^{\circ} \mathrm{C}$ and $\sim 70^{\circ} \mathrm{C}$ with the similar intensity, indicating the " N " on both NN and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ would interact with CO_{2} and enhance the $\mathrm{CO}_{2} \mathrm{RR}$ reaction activity by providing additional
 Fig. 12) also reflect their similar interactions with CO 2 . However, the $\mathrm{FEC} 2 \mathrm{H} 4(73 \%)$ of $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ catalyst is lower than $\mathrm{Cu}-\mathrm{NN}\left(\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}=83 \%\right)$ but higher than pristine $\mathrm{Cu}\left(\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}=40 \%\right)$, which means that the valence of copper plays the more critical role than the interaction between amine and CO_{2} in enhancing $\mathrm{CO}_{2} \mathrm{RR}$.

4.4.4 Direct vs. cascade flow processes for the formation of $\mathrm{C}_{2} \mathrm{H}_{4}$

The electrical power consumption is one the primary obstacle for the development of the $\mathrm{CO}_{2} \mathrm{RR}$. Although progress has been made in the direct electroreduction of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ in MEA cells with appreciable selectivity and high current density, the requested full-cell potential makes the production cost of ethylene uncompetitive compared to industrial-grade ethylene obtained from steam cracking of naphta or natural gas. In addition, the formation of carbonate in the MEA reactor combined to the strongly alkaline conditions leads to poor performance stability and low CO_{2} single-pass conversion rate due to the flow of hydroxide ions from anode that reacts with gas CO_{2}. Technical-economic analyses have suggested that a high current density ($>150 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$), and low operating full-cell potential $(<3 \mathrm{~V})$ are the necessary requirements to compete with the traditional ethylene production process ${ }^{50}$. CO can advantageously replace CO_{2} to produce multicarbon species via the CO reduction reaction (CORR). The CORR is compatible with alkaline electrolytes at the anode to prevent the competitive hydrogen evolution reaction without significant carbonate formation that typically plagues the conversion of $\mathrm{CO}_{2}{ }^{63}$. It is also anticipated that the CORR can improve the charge transfer kinetics and the selectivity towards ethylene, while decreasing the energy footprint of the system ${ }^{10,11,64}$. The realization of cascade flow processes has recently been explored to convert CO_{2} to CO and then use CO to produce C_{2+} products ${ }^{65,66}$.

In light of this, we sought to develop an integrated flow electrochemical system for the energy-efficient conversion of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ by coupling two MEA cells using $\mathrm{Cu}-\mathrm{NN}$ as CORR catalyst. Considering the high market price of iridium (at $\sim 6 \mathrm{k} \$$ per once, $+375 \%$ since Nov. 2020), we thought to replace expensive IrOx with NiFe based layered double hydroxide (NiFe LDH) as anode catalyst ${ }^{67}$. We confirmed that NiFe LDH shows a lower overpotential than IrOx toward the OER in 1 M KOH (Supplementary Fig. 43). We then estimated the
CO_{2}-to-CO performance using electrodeposited Ag and NiFe based layered double hydroxide (NiFe LDH) as cathode and anode, respectively. We achieved a $94 \% \mathrm{FE}$ for CO at the full-cell potential of -3.55 V and a specific current density for CO of $119 \mathrm{~mA} \mathrm{~cm}^{-2}$ for an inlet flow rate of 10 sccm of CO_{2} (Supplementary Fig. 44, and Supplementary Table 18). We evaluated the single-pass conversion efficiency (SPCE) to be $\sim 31 \%$ at -3.55 V . To achieve an optimal CO feed of $\sim 4.6 \mathrm{sccm}$, we set the full-cell voltage of the first MEA cell to -3.8 V corresponding to a FE and specific current density for CO of $\sim 84 \%$ and $166 \mathrm{~mA} \mathrm{~cm}^{-2}$, respectively. The outlet gas from the Agbased MEA was purified using a CO_{2} capture solution containing 30% ethanolamine and then introduced into the second MEA cell for the CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion. We tested the CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion system using pristine $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$, and $\mathrm{Cu}-\mathrm{NN} /$ ionomer as cathode, and IrOx as anode catalysts. The FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ on $\mathrm{Cu}-\mathrm{NN}$ reached a record-high values for the CORR at $\sim 86.0 \%$ and a full-potential of -2.5 V . $\mathrm{Cu}-\mathrm{NN}$ clearly outperforms Cu and $\mathrm{Cu}-\mathrm{NN} /$ ionomer with FEC2H4 of $\sim 67.4 \%$ and $\sim 72.1 \%$, respectively (Supplementary Fig. 45 and Supplementary Table 19).

The operating cell voltage (ECell) for the $\mathrm{CO}_{2} \mathrm{RR}$ is known to be responsible for a significant electrical consumption and the oxidation evolution reaction (OER) at the anode brings a high energy penalty to the process ${ }^{5}$. By operating the cascade MEA cells with NiFe LDH and $\mathrm{Cu}-\mathrm{NN}$ as anode and cathode catalysts, we achieved an optimal $E_{\text {Cell }}$ of -2.3 V for maximizing the production of ethylene with a $\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}$ of $\sim 86 \%$ (Fig. 4 a and Supplementary Fig. 46 and Supplementary Table 20). We determined a stable full-cell energy efficiency of 39.6% and a $12.3 \% \mathrm{CO}_{2}$-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ cascade single pass conversion efficiency for the cascade flow process with a specific current density of $154 \mathrm{~mA} \mathrm{~cm}^{-2}$. For comparison, $\mathrm{Cu}-\mathrm{NN} /$ ionomer and pristine Cu catalysts exhibit EEs of 30.5% and 27.4% and CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ cascade conversion rates of 12.9% and $\sim 6.0 \%$ at -2.3 V , respectively (Figs. 4 b and c, Supplementary Fig. 47 and Table 21). The formation rates of ethylene on $\mathrm{Cu}-\mathrm{NN} /$ ionomer increased by 191% compared to pristine Cu electrodes. We estimated an EPC value of only $25.6 \mathrm{kWh} \mathrm{Nm}-3$ for the $\mathrm{Cu}-\mathrm{NN}+\mathrm{NiFe}$ LDH system - lower than for $\mathrm{Cu}-\mathrm{NN} /$ ionomer and Cu (Fig.4b and Supplementary Table 21). Remarkably, the cascade system maintained a $10.7 \% \mathrm{CO}_{2}$-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion rate at an average specific current density of 140 $\mathrm{mA} \mathrm{cm}{ }^{-2}$ for 100 h (Fig.4d and Supplementary Table 22). We finally compared the performance of the $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts with previous literature benchmarks ${ }^{6,7,49,50,52,65,66,68-70}$ and found that $\mathrm{Cu}-\mathrm{NN}$ display greater energy efficiency and lower EPC for both the direct and the cascade flow processes (Figs. 5a, b).

Fig. $4 \mathrm{CO}_{2}$-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ performance in the cascade flow process. (a) The FE for $\mathrm{C}_{2} \mathrm{H}_{4}$ obtained using CO as feed. (b) Comparison of different performance of the $\mathrm{Cu}-\mathrm{X}$ electrodes: Faradaic efficiency (FE), energy efficiency (EE), specific current density (j), energy power consumption (EPC) and formation rate (R) of $\mathrm{C}_{2} \mathrm{H}_{4}$. (c) Comparison of the CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ single-pass conversion measured for a single MEA cell (half-filled sphere) and for the cascade flow process (filled sphere).
(d) The stability of Ag and $\mathrm{Cu}-\mathrm{NN}$ catalysts in MEA cells. The error bars in a and \mathbf{c} correspond to the standard deviation of three independent measurements.

To explore the wider application of aryl diazonium salts-tailored catalysts' oxidation state strategy in $\mathrm{CO}_{2} \mathrm{RR}$, we further prepared NN functionalized commercial Cu electrode $(\mathrm{cCu}-\mathrm{NN}$) and electrodeposited Ag sample (AgNN) (Supplementary Figs. 48 and 49) and examined their performance in MEA electrolyzers. As displayed in Supplementary Fig. 50, the Faradaic efficiency of ethylene on cCu-NN electrode can get to 42%, which is higher than blank cCu electrode ($\mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4}=33 \%$). Furthermore, the Auger LMM and XANES results also prove that the average oxidation state of copper from $\mathrm{cCu}-\mathrm{NN}$ has been improved after modifying with NN . It means that the strategy of tailoring Cu valence by grafting aryl diazonium salt to improve $\mathrm{CO}_{2} \mathrm{RR}$ activity is generalized. Most importantly, the increased oxidation state of Ag and the decreased $\mathrm{FE}_{\mathrm{Co}}$ from $\mathrm{Ag}-\mathrm{NN}$ prove that aryl diazonium salt affects the $\mathrm{CO}_{2} \mathrm{RR}$ activity by changing the valence of grafted metals instead of directly interacting with CO_{2} (Supplementary Fig. 51). From DFT calculations, the almost similar adsorption energy of CO_{2} on both Cu and $\mathrm{Cu}-\mathrm{NN}$ electrodes also indicates that the interaction between functional groups and CO_{2} can be neglected, even though there are some nitrogen atoms on it (Supplementary Fig. 6). Furthermore, to exclude the anion's effect on $\mathrm{CO}_{2} \mathrm{RR}$ activity, a new aryl diazonium salt with the same anion as NN while the similar cation as N was modified on copper. The new diazonium salt functionalized Cu electrode displayed a $\sim 74 \%$ Faradaic efficiency towards $\mathrm{C}_{2} \mathrm{H}_{4}$ at 3.8 V , which was close to $\mathrm{Cu}-\mathrm{N}$ instead of $\mathrm{Cu}-\mathrm{NN}$ catalyst, indicating that the cation's configuration on aryl diazonium salt plays a more important role in affecting the $\mathrm{CO}_{2} \mathrm{RR}$ performance than the anion (Supplementary Fig. 52).

To assess the economic viability of electro-reduction of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ on $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$, and $\mathrm{Cu}-\mathrm{NN} / \mathrm{ionomer}$, we carried out techno-economic analyses by comparing the direct conversion route $\left(\mathrm{CO}_{2}-\right.$-to $-\mathrm{C}_{2} \mathrm{H}_{4}$ in a single reactor) with the two steps cascade systems $\left(\mathrm{CO}_{2}\right.$-to-CO, and CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ in cascade system). We considered a single MEA cell to convert CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ using a neutral $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ anolyte, while $0.1 \mathrm{M} \mathrm{KHCO}_{3}$ and 1 M KOH were used as anolytes in the first and the second MEA cells for the CO_{2}-to-CO, and CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ reactions (See Note S1 in the Supplementary Information for details). We determined the OPEX of the direct and the cascade flow processes for the production of 1 ton of $\mathrm{C}_{2} \mathrm{H}_{4}$ with/without the use of ionomer. In our calculations, we assumed a catalyst lifetime of one year (8,760 hours) and a total electrode surface of $100 \mathrm{~m}^{2}$. Figs. 5 c and d show the cost distribution for the different parameters, without considering the CO_{2} loss due to carbonate formation and membrane crossover as well as the downstream separation costs. We note that the installation costs and the balance of plant are part of the capitalization expenditure (CAPEX) and are not included in our calculations (See Note S2 in the Supplementary Information file). Among the four different MEA configurations, we found that direct conversion of CO_{2} to ethylene using $\mathrm{Cu}-\mathrm{NN}$ and ionomer is the closest to profitability. Importantly the cost of ethylene production decreases from $12,600 \$$ ton $^{-1}$ to $4,500 \$$ ton $^{-1}$ using pristine Cu and $\mathrm{Cu}-\mathrm{NN} /$ ionomer electrodes, respectively, which corresponds to a 64% reduction. The analysis of the cost breakdown highlights that, in absence of ionomer, the main expense items for the direct production of the $\mathrm{C}_{2} \mathrm{H}_{4}$ from CO_{2} are the anode catalyst and the membranes for a total of 57.4% of the production cost. The use of ionomer lowers the cost (per ton of $\mathrm{C}_{2} \mathrm{H}_{4}$) of most parameters due to the improvement of the yield rate of the process and the EPC accounts for most of the expenses (32.6\%) (Fig. 5c and d). Conversely, in the cascade configuration, the cost of the anionexchange membrane (AEM) represents the main expense for $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer conditions at 47.1% and 39.4%, respectively (Fig. 5 c and d). These findings point to the opportunity to rapidly improve the profitability of $\mathrm{CO}_{2} \mathrm{RR}$ by decreasing the cost to electrolyte membranes (Supplementary Table 23). Overall, aryl functionalized $\mathrm{Cu}^{+0.26}$ holds potential to lower the financial gap between the low carbon-footprint $\mathrm{CO}_{2} \mathrm{RR}$ technology and the traditional ethylene production based on fossil resources.

Fig. 5 Techno-economic analyses for the $\mathrm{CO}_{2}-$ to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion based on the direct and the cascade flow processes. The comparison of energy efficiency (EE) (a) and the cost of the electrical power consumption (b) for the $\mathrm{CO}_{2}-$ to- $\mathrm{C}_{2} \mathrm{H}_{4}$ and the CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ reactions. Comparison of operational costs for production of $\mathrm{C}_{2} \mathrm{H}_{4}$ on $\mathrm{Cu}-\mathrm{NN}(\mathbf{c})$ and $\mathrm{Cu}-\mathrm{NN} / \operatorname{ionomer}(\mathbf{d})$ in both single MEA and cascade MEA systems (the dash line refers to pristine Cu).

4.5 Conclusions

This work presents a novel approach to orient the $\mathrm{CO}_{2} \mathrm{RR}$ and the CORR towards the production of ethylene with record-high selectivity and formation rate. The origin of the high selectivity for $\mathrm{C}_{2}+$ products is attributed to the formation of stable $\mathrm{Cu}^{\delta^{+}}(0<\delta<1)$ as supported by our operando and ex-situ physical characterizations using XPS, XAS and Raman spectroscopy. We attributed the near-unity selectivity for $\mathrm{C}_{2} \mathrm{H}_{4}$ among the C_{2+} products to the lower energy associated with the formation of the $* \mathrm{CH}_{2} \mathrm{CH}$ intermediate on $\mathrm{Cu}^{0.26+}$. When implemented in a neutral MEA cell, the $\mathrm{Cu}-\mathrm{NN}$ catalyst achieved a FE for ethylene of $83 \pm 2 \%$ with a partial ethylene current density of $212 \pm 3 \mathrm{~mA} \mathrm{~cm}^{-2}$. The full-cell EE and the conversion efficiency for ethylene can be further increased to 39.6% and 12.3%, respectively, with a low record-low EPC of $25.6 \mathrm{kWh} / \mathrm{Nm}^{3}$ by replacing CO_{2} for CO in a cascade flow process. Our findings provide a route towards practical developments for the CO_{2}-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion reaction using valence engineering of the Cu sites.

4.6 References

1 Bushuyev, O. S. et al. What should we make with CO_{2} and how can we make it? Joule 2, 825-832 (2018).
2 Ager, J. W. \& Lapkin, A. A. Chemical storage of renewable energy. Science 360, 707-708 (2018).
3 Jouny, M., Luc, W. \& Jiao, F. General techno-economic analysis of CO_{2} electrolysis systems. Industrial \& Engineering Chemistry Research 57, 2165-2177 (2018).

4 Verma, S., Kim, B., Jhong, H. R. M., Ma, S. \& Kenis, P. J. A gross-margin model for defining
technoeconomic benchmarks in the electroreduction of CO_{2}. ChemSusChem 9, 1972-1979 (2016).
5 Verma, S., Lu, S. \& Kenis, P. J. Co-electrolysis of CO_{2} and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nature Energy 4, 466-474 (2019).
$6 \quad \mathrm{Li}, \mathrm{F}$. et al. Molecular tuning of CO_{2}-to-ethylene conversion. Nature 577, 509-513 (2020).
7 García de Arquer, F. P. et al. CO_{2} electrolysis to multicarbon products at activities greater than $1 \mathrm{Acm}-2$. Science 367, 661-666 (2020).

8 Zhong, M. et al. Accelerated discovery of CO_{2} electrocatalysts using active machine learning. Nature 581, 178-183 (2020).
9 Ma, S., Luo, R., Moniri, S., Lan, Y. \& Kenis, P. J. Efficient electrochemical flow system with improved anode for the conversion of CO_{2} to CO. Journal of The Electrochemical Society 161, F1124 (2014).
10 Verma, S., Lu, X., Ma, S., Masel, R. I. \& Kenis, P. J. The effect of electrolyte composition on the electroreduction of CO_{2} to CO on Ag based gas diffusion electrodes. Physical Chemistry Chemical Physics 18, 7075-7084 (2016).

11 Dinh, C.-T. et al. CO_{2} electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783-787 (2018).
12 Weng, L.-C., Bell, A. T. \& Weber, A. Z. Towards membrane-electrode assembly systems for CO_{2} reduction: a modeling study. Energy \& Environmental Science 12, 1950-1968 (2019).
13 Jouny, M., Hutchings, G. S. \& Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nature Catalysis 2, 1062-1070 (2019).
14 Xiao, H., Goddard, W. A., Cheng, T. \& Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO 2 activation and CO dimerization for electrochemical reduction of CO_{2}. Proceedings of the National Academy of Sciences 114, 6685-6688 (2017).

15 De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis 1, 103-110 (2018).
16 Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. \& Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu (i) species in $\mathrm{C} 2+$ product selectivity during CO 2 pulsed electroreduction. Nature Energy 5, 317-325 (2020).

17 Eilert, A., Roberts, F. S., Friebel, D. \& Nilsson, A. Formation of copper catalysts for CO_{2} reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. The journal of physical chemistry letters 7, 1466-1470 (2016).
18 Zhou, Y. et al. Dopant-induced electron localization drives CO_{2} reduction to C 2 hydrocarbons. Nature chemistry 10, 974-980 (2018).
19 Lee, S., Kim, D. \& Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Cu}$ catalyst. Angewandte Chemie 127, 14914-14918 (2015).

20 Pinson, J. Attachment of organic layers to materials surfaces by reduction of diazonium salts. Aryl
diazonium salts, 1-35 (2012).
21 Berisha, A., Chehimi, M. M., Pinson, J. \& Podvorica, F. Electrode surface modification using diazonium salts. Electroanalytical Chemistry 26 (2015).
22 Allongue, P. et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the american chemical society 119, 201-207 (1997).
23 Belanger, D. \& Pinson, J. Electrografting: a powerful method for surface modification. Chemical Society Reviews 40, 3995-4048 (2011).

24 Mooste, M. et al. Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. Journal of Electroanalytical Chemistry 817, 89-100 (2018).
25 Kendig, M., Hon, M. \& Sinko, J. Inhibition of Oxygen Reduction on Copper in Neutral Sodium Chloride. ECS Transactions 1, 119 (2006).

26 Chira, A., Bucur, B. \& Radu, G.-L. Electrodeposited organic layers formed from aryl diazonium salts for inhibition of copper corrosion. Materials 10, 235 (2017).
27 Li, D. et al. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Advances in Colloid and Interface Science 294, 102479 (2021).

Gillan, L., Teerinen, T., Johansson, L.-S. \& Smolander, M. Controlled diazonium electrodeposition towards a biosensor for C-reactive protein. Sensors International 2, 100060 (2021).

29 Hetemi, D., Noël, V. \& Pinson, J. Grafting of diazonium salts on surfaces: Application to biosensors. Biosensors 10, 4 (2020).

30 Laufer, R. S. \& Dmitrienko, G. I. Diazo group electrophilicity in kinamycins and lomaiviticin A: potential insights into the molecular mechanism of antibacterial and antitumor activity. Journal of the American Chemical Society 124, 1854-1855 (2002).
31 Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. \& Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews 40, 4143-4166 (2011).

32 Wei, G. et al. Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug-delivery system. Chemistry-A European Journal 18, 14708-14716 (2012).

33 Shewchuk, D. M. \& McDermott, M. T. Comparison of diazonium salt derived and thiol derived nitrobenzene layers on gold. Langmuir 25, 4556-4563 (2009).
$34 \mathrm{Kim}, \mathrm{C}$. et al. Insight into electrochemical CO_{2} reduction on surface-molecule-mediated Ag nanoparticles. ACS Catalysis 7, 779-785 (2017).

35 Fang, Y. \& Flake, J. C. Electrochemical reduction of CO_{2} at functionalized Au electrodes. Journal of the American chemical society 139, 3399-3405 (2017).

Wang, J. et al. Fastening Br-ions at copper-molecule interface enables highly efficient electroreduction
of CO_{2} to ethanol. ACS Energy Letters 6, 437-444 (2021).
37 Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angewandte Chemie International Edition 42, 4302-4320 (2003).

Baquero, E. A., Tricard, S., Flores, J. C., de Jesús, E. \& Chaudret, B. Highly stable water-soluble platinum nanoparticles stabilized by hydrophilic n-heterocyclic carbenes. Angewandte Chemie 126, 13436-13440 (2014).

39 Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society 59, 96-103 (1937).
40 Hansch, C., Leo, A. \& Taft, R. A survey of Hammett substituent constants and resonance and field parameters. Chemical reviews 91, 165-195 (1991).
$41 \mathrm{Li}, \mathrm{Y} . \mathrm{C}$. et al. Binding site diversity promotes CO_{2} electroreduction to ethanol. Journal of the American Chemical Society 141, 8584-8591 (2019).

42 Hurley, B. L. \& McCreery, R. L. Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction. Journal of The Electrochemical Society 151, B252 (2004).

43 Doppelt, P., Hallais, G., Pinson, J., Podvorica, F. \& Verneyre, S. Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chemistry of Materials 19, 4570-4575 (2007).
44 Menanteau, T., Dias, M. n., Levillain, E., Downard, A. J. \& Breton, T. Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism. The Journal of Physical Chemistry C 120, 4423-4429 (2016).

45 Cai, J. et al. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism. Applied Surface Science 436, 950-956 (2018).
46 Kusoglu, A. \& Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chemical reviews 117, 987-1104 (2017).
47 Allen, F. I. et al. Morphology of hydrated as-cast Nafion revealed through cryo electron tomography. ACS Macro Letters 4, 1-5 (2015).
48 Kreuer, K. D. \& Portale, G. A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications. Advanced Functional Materials 23, 5390-5397 (2013).
49 Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Letters 5, 2811-2818 (2020).
50 Li , J. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nature communications 12, 1-10 (2021).

51 Wang, Y. et al. Catalyst synthesis under CO_{2} electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis 3, 98-106 (2020).

52 Lee, W. H. et al. Highly selective and stackable electrode design for gaseous CO 2 electroreduction to ethylene in a zero-gap configuration. Nano Energy 84, 105859 (2021).

Zhang, W. et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO_{2} reduction. Journal of the American Chemical Society 142, 11417-11427 (2020).
54 Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO_{2} reduction. The Journal of Physical Chemistry C 121, 12337-12344 (2017).
55 Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. \& Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH . ACS Catalysis 8, 7507-7516 (2018).

56 Lum, Y. \& Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO_{2} reduction. Nature Catalysis 2, 86-93 (2019).
57 Hollins, P. The influence of surface defects on the infrared spectra of adsorbed species. Surface Science Reports 16, 51-94 (1992).
58 Kuhl, K. P., Cave, E. R., Abram, D. N. \& Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy \& Environmental Science 5, 7050-7059 (2012).

59 Gunathunge, C. M., Li, J., Li, X., Hong, J. J. \& Waegele, M. M. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catalysis 10, 6908-6923 (2020).

60 Gunathunge, C. M., Ovalle, V. J. \& Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Physical Chemistry Chemical Physics 19, 3016630172 (2017).
61 Heyes, J., Dunwell, M. \& Xu, B. CO_{2} reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. The Journal of Physical Chemistry C 120, 17334-17341 (2016).

62 Akemann, W. \& Otto, A. Vibrational modes of CO adsorbed on disordered copper films. Journal of Raman spectroscopy 22, 797-803 (1991).
63 Verma, S. et al. Insights into the low overpotential electroreduction of CO_{2} to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Letters 3, 193-198 (2017).
64 Xiao, H., Cheng, T., Goddard III, W. A. \& Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). Journal of the American Chemical Society 138, 483-486 (2016).

65 Yadegari, H. et al. Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams. ACS Energy Letters 6, 3538-3544 (2021).
66 Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706-719 (2021).
67 Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413-1416 (2016).
68 Ripatti, D. S., Veltman, T. R. \& Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C_{2} products with high single-pass conversion. Joule 3, 240-256 (2019).

69 Rabinowitz, J. A. \& Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on
solving one basic problem. Nature Communications 11, 1-3 (2020).
70 Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777-2791 (2019).
71 Perdew, J. P., Burke, K. \& Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters 77, 3865 (1996).

72 Blöchl, P. E. Projector augmented-wave method. Physical review B 50, 17953 (1994).
73 Henkelman, G., Arnaldsson, A. \& Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 36, 354-360 (2006).

74 Henkelman, G., Uberuaga, B. P. \& Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics 113, 9901-9904 (2000).
75 Montoya, J. H., Shi, C., Chan, K. \& Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO_{2} electroreduction. The journal of physical chemistry letters 6, 2032-2037 (2015).
76 Goodpaster, J. D., Bell, A. T. \& Head-Gordon, M. Identification of possible pathways for C-C bond formation during electrochemical reduction of CO_{2} : new theoretical insights from an improved electrochemical model. The journal of physical chemistry letters 7, 1471-1477 (2016).

77 Neugebauer, J. \& Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111). Physical Review B 46, 16067 (1992).
78 Montoya, J. H., Peterson, A. A. \& Nørskov, J. K. Insights into C- C Coupling in CO_{2} Electroreduction on Copper Electrodes. ChemCatChem 5, 737-742 (2013).

79 Cheng, T., Xiao, H. \& Goddard III, W. A. Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the $\mathrm{Cu}(100)$ surface, including multiple layers of explicit solvent at pH 0 . The journal of physical chemistry letters 6, 4767-4773 (2015).

4.7 Notes

4.7.1 Note S1. Techno-economic assessment (TEA) of ethylene performance in CO2RR systems based on membrane-electrode-assembly (MEA) electrolyzers.

To assess the energy and cost associated with CO_{2} to ethylene on our catalysts ($\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer $)$, we performed energy and techno-economic assessments (TEA) for two CO_{2} RR systems based on MEA models. We have compared the energy and cost distributions of producing ethylene for single MEA system $\left(\mathrm{CO}_{2}\right.$-to- $\mathrm{C}_{2} \mathrm{H}_{4}$, Schematic.1) and the cascade MEA systems (CO_{2}-to-CO and CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$, Schematic.1).

Schematic 1. Models of single CO_{2} RR MEA system (a) and the cascade CO_{2} RR MEA system (b).

4.7.2 Note S2. Details of techno-economic assessment (TEA).

In our models, we calculate the cost of producing $\mathrm{C}_{2} \mathrm{H}_{4}$ per year based on the different $\mathrm{C}_{2} \mathrm{H}_{4}$ formation rates from our different catalysts $(\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer) without considering the CO 2 loss (carbonate formation and cross over the membrane), products separation costs and installation costs, as well as the balance of plant.

For the cathode, we integrate our catalysts ($\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer) into MEA with the physical area of electrode of $100 \mathrm{~m}^{2}$. In the cascade condition, we use Ag as the cathode for the first electrolyzer. For the membrane, we use anion-exchange membrane (Sustainion® X37-50) (Dioxide Materials) for all electrolyzers and the lifetime is regarded as 1 year. For the anode, the loading amount of $2 \mathrm{mg} \mathrm{cm}^{-2} \mathrm{IrOx}$ on Ti mesh is used as the anode (physical area of $100 \mathrm{~m}^{2}$) for single Cu-based MEA. In the cascade Cu-based MEA and Ag-based MEA systems, the NiFe based layered double hydroxide (NiFe LDH) supported on a Ti mesh as the anode. The lifetime for all anodes is also regarded as 1 year.

For the electrolyte, we use $0.5 \mathrm{M} \mathrm{KHCO}_{3}, 0.1 \mathrm{M} \mathrm{KHCO}_{3}$ and 1 M KOH as the anolyte for single Cu-based MEA, Ag-based MEA and cascade Cu-based MEA systems, respectively. The amount of electrolyte required in our TEA model was calculated using the ratio of 100 L electrolyte per m^{2} of electrolyzer. This ratio is based on approximate ratios used in lab-scale experiments and it provides a starting point to estimate electrolyte costs. Once a total volume of electrolyte is calculated, it is assumed to be circulated through the electrolyzer constantly for one year before being completely replaced. Therefore, the total cost of purchasing electrolyte with a $100 \mathrm{~L} / \mathrm{m}^{2}$ ratio is reduced to a daily cost to find the cost per tonne of product. This calculation provides an estimate of the cost of electrolyte.

In the cascade system, to adsorb the unreacted CO_{2} from the gas outlet side of Ag -based MEA, $30 \mathrm{wt} \%$ ethanolamine solution is applied to this cascade system. According to real testing condition in $4 \mathrm{~cm}^{2}$ MEA electrolyzer, we calculate the required ethanolamine in $100 \mathrm{~m}^{2}$ MEA electrolyzer and the amount for $30 \mathrm{wt} \%$ ethanolamine is around 10000 L for one year MEA operation. And we think the unreacted CO_{2} is completely adsorbed by $30 \mathrm{wt} \%$ ethanolamine. It is assumed that the only by-product produced on the cathode side is hydrogen and that the anode performs OER, producing only oxygen. Once the total amount of electrolyzer materials, input chemicals, and electricity are purchased, there are some external systems that are modelled.

Cathode input CO_{2} cost

For single MEA system, we first calculate the different conversion rates of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ on different catalysts $\left(\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}\right.$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer) based on their $\mathrm{C}_{2} \mathrm{H}_{4}$ formation rates. Then we can multiply the market price of $\mathrm{CO}_{2}(30 \$ /$ ton $)$ to get the total cost of cathode input CO_{2}. And here we calculate the data of $\mathrm{Cu}-\mathrm{NN}$ as an example.

The calculation is given by:

$$
\begin{align*}
\mathrm{CO}_{2} \text { required } & \left(\frac{\text { tonne } \mathrm{CO}_{2}}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}}\right) \\
& =\mathrm{C}_{2} \mathrm{H}_{4}\left(\text { tonne } \frac{\mathrm{C}_{2} \mathrm{H}_{4}}{\text { day }}\right) \times \frac{\text { molecular weight }_{\mathrm{CO} 2}}{\text { molecular weight }} \mathrm{C}_{\mathrm{C} 4}
\end{align*}
$$

Plugging in numbers gives us:

$$
\begin{align*}
& \begin{aligned}
& \mathrm{CO}_{2} \text { required }\left(\frac{\text { tonne } \mathrm{CO}_{2}}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}}\right)=0.443\left(\text { tonne } \frac{\mathrm{C}_{2} \mathrm{H}_{4}}{\text { day }}\right) \times \frac{44 \frac{\mathrm{~g}}{\mathrm{~mol}}}{28 \frac{g}{\mathrm{~mol}}} \times \frac{2}{1} \times \frac{1}{8.35 \%} \\
&=16.67 \frac{\text { tonne } \mathrm{CO}_{2}}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}}
\end{aligned} \\
& \text { Cost of cathode input } \mathrm{CO}_{2}\left(\frac{\$}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}}\right)=30 \frac{\$}{\text { tonne } \mathrm{CO}_{2}} \times 16.67 \frac{\text { tonne } \mathrm{CO}_{2}}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}} \tag{2}\\
& \\
& =500.1 \frac{\$}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}} \tag{3}
\end{align*}
$$

Electrolyzer cost

In single MEA system, to find the cost of the electrolyzer, the total power needed was multiplied by the cost per kW provided above.

According to the formation rate of $\mathrm{C}_{2} \mathrm{H}_{4}$ on $\mathrm{Cu}-\mathrm{NN}\left(0.443\right.$ tonne/day), we can easily know $\mathrm{C}_{2} \mathrm{H}_{4}$ production ($\mathrm{mol} / \mathrm{s}$).

$$
\begin{gather*}
C_{2} \mathrm{H}_{4} \text { production }\left(\frac{\mathrm{mol}}{\mathrm{~s}}\right)=\frac{C_{2} H_{4} \text { production }\left(\frac{g}{d a y}\right)}{\text { molecular weight } C_{C 2 H 4} \times 86400\left(\frac{\mathrm{~s}}{\text { day }}\right)}=\frac{0.443 \times 10^{6}\left(\frac{\mathrm{~g}}{d a y}\right)}{28\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times 86400\left(\frac{\mathrm{~s}}{d a y}\right)} \\
=0.183 \frac{\mathrm{~mol}}{\mathrm{~s}} \tag{4}
\end{gather*}
$$

Next, we can find the total current needed to produce this much $\mathrm{C}_{2} \mathrm{H}_{4}$, taking into account the loss of electrons as the FE is 83% on $\mathrm{Cu}-\mathrm{NN}$ catalyst.

$$
\begin{gather*}
\text { Total current }(A)=\frac{C_{2} H_{4} \text { production }\left(\frac{\mathrm{mol}}{\mathrm{~s}}\right) \times \text { electrons transferred } \times \text { Faraday's constant }}{F E_{C 2 \mathrm{H} 4}} \\
=0.183 \frac{\mathrm{~mol}}{\mathrm{~s}} \times 12 \times 96485 \frac{\mathrm{sA}}{\mathrm{~mol}} \div 83 \%=255278 \mathrm{~A} \tag{5}
\end{gather*}
$$

Now, multiplying by the cell voltage (3.55 V) to give the power consumed:
Power consumed $(W)=$ total current $(A) \times$ Cell voltage $(V)=255278 \mathrm{~A} \times 3.55 \mathrm{~V}=906238 \mathrm{~W}$

$$
\begin{equation*}
=906.238 \mathrm{~kW} \tag{6}
\end{equation*}
$$

Multiplying the price of electrolyzer and scaling by the current density gives:
total electrolyzer cost(\$)

$$
\begin{align*}
& =\text { power consumed }(\mathrm{kW}) \times \text { electrolyzer cost }\left(\frac{\$}{k W}\right) \times \frac{\text { specific current density } y_{C 2 H 4}}{\text { input total current density }} \\
& =906.238 \mathrm{~kW} \times 300\left(\frac{\$}{k W}\right) \times \frac{212}{256}=225143 \$ \tag{7}
\end{align*}
$$

Finally, the cost for producing per tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ can be calculated as below,

$$
\begin{gather*}
\text { Total electrolyzer } \operatorname{cost}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { total electrolyzer } \operatorname{cost}(\$)}{\text { total produced } C_{2} H_{4}(\text { tonne })}=\frac{225143 \$}{162 \text { tonne }} \\
=1389.77\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \tag{8}
\end{gather*}
$$

For cascade MEA system,
The total electrolyzer cost should include the cost for the first Ag-based MEA $\left(\mathrm{CO}_{2}\right.$ to CO$)$ and the second Cu -NN-based MEA (CO to $\mathrm{C}_{2} \mathrm{H}_{4}$).

For the first MEA (CO_{2} to CO), a production rate of $0.75 \mathrm{~mol} / \mathrm{s}$ for CO can be achieved on Ag cathode according to the $\mathrm{FE}_{\mathrm{CO}}$ and CO formation rate. Next, we can find the total current needed to produce this much CO, taking into account the loss of electrons as the FE is 84% on Ag catalyst.

$$
\begin{gather*}
\text { Total current }(A)=\frac{\text { CO production }\left(\frac{\mathrm{mol}}{\mathrm{~s}}\right) \times \text { electrons transferred } \times \text { Faraday's constant }}{F E_{C O}} \\
=0.75 \frac{\mathrm{~mol}}{\mathrm{~s}} \times 2 \times 96485 \frac{\mathrm{sA}}{\mathrm{~mol}} \div 84 \%=172294 \mathrm{~A} \tag{9}
\end{gather*}
$$

Multiplying by the cell voltage (3.8 V) to give the power consumed:

$$
\begin{aligned}
& \text { Power consumed }(W)=\text { total current }(A) \times \text { Cell voltage }(V)=172294 \mathrm{~A} \times 3.8 \mathrm{~V}=654.7 \mathrm{~W} \\
& \quad=654.7 \mathrm{~kW}
\end{aligned}
$$

Then, the cost for producing per tonne $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{Cu}-\mathrm{NN})$ can be calculated as below,

$$
\begin{gather*}
\text { Total electrolyzer } \operatorname{cost}_{A g}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { total electrolyzer } \operatorname{cost}_{A g}(\$)}{\text { total produced } C_{2} H_{4}(\text { tonne })} \\
=\frac{654.7 \mathrm{~kW} \times 300\left(\frac{\$}{\mathrm{~kW}}\right) \times \frac{149}{173}}{181.4 \text { tonne } C_{2} H_{4}}=932.6\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \tag{10}
\end{gather*}
$$

Next, we can calculate the $\mathrm{C}_{2} \mathrm{H}_{4}$ production in the second MEA electrolyzer with $\mathrm{Cu}-\mathrm{NN}$, bare Cu and $\mathrm{Cu}-$ $\mathrm{NN} /$ ionomer as the cathodes and the values are $0.199 \mathrm{~mol} / \mathrm{s}, 0.17$ and $0.31 \mathrm{~mol} / \mathrm{s}$, respectively (the details can be found in the method part of manuscript).
Here, we take $\mathrm{Cu}-\mathrm{NN}$ as an example.
Now, multiplying by the cell voltage (2.3 V) to give the power consumed:
Power consumed $(W)=$ total current $(A) \times$ Cell voltage $(V)=178609 \mathrm{~A} \times 2.3 \mathrm{~V}=410800 \mathrm{~W}$

$$
\begin{equation*}
=410.8 \mathrm{~kW} \tag{11}
\end{equation*}
$$

Multiplying the price of electrolyzer and scaling by the current density gives:

Total electrolyzer $\operatorname{cost}_{C u-N N}(\$)$

$$
\begin{align*}
& =\text { power consumed }(k W) \times \text { electrolyzer cost }\left(\frac{\$}{k W}\right) \times \frac{\text { specific current density }_{C 2 H 4}}{\text { input total current density }} \\
& =410.8 \mathrm{~kW} \times 300\left(\frac{\$}{k W}\right) \times \frac{154}{179}=106028 \$ \tag{12}
\end{align*}
$$

Finally, the cost for producing per tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ can be calculated as below,

$$
\begin{gather*}
\text { Total electrolyzer cost } t_{C u-N N}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { total electrolyzer } \operatorname{cost}(\$)}{\text { total produced } C_{2} H_{4}(\text { tonne })}=\frac{106028 \$}{181.4 \text { tonne }} \\
=584.5\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \tag{13}
\end{gather*}
$$

Total electrolyzer cost $\left(\frac{\$}{\text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}}\right)$

$$
\begin{align*}
& ={\text { total electrolyzer } \operatorname{cost}_{A g}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)+\text { total electrolyzer } \operatorname{cost}_{C u-N N}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)}^{=932.6\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)+584.5\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)} \\
& =1517.1\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)
\end{align*}
$$

Electricity power consumption (EPC)

In single MEA system, to find the cost of electricity, we can calculate the total energy input according to electricity power consumption formular (Eq. 10 in the manuscript). Using this, we multiply by 24 hours to find the energy required to produce 1 tonne of $\mathrm{C}_{2} \mathrm{H}_{4}$ (as our production rate is 0.443 tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ per day) and multiply by the electricity cost. Here, we use an electricity price of $0.03 \$ \mathrm{kWh}^{-1}$, taken from recent onshore wind power auctions. The cost of electricity can be calculated as:
Cost of electricity $\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { Power consumption }(k w) \times 24 h \times \text { electricity price }\left(\frac{\$}{k W h^{-1}}\right)}{C_{2} H_{4} \operatorname{Production}\left(\frac{\text { tonne } C_{2} H_{4}}{\text { day }}\right)}$

$$
\begin{equation*}
=\frac{906.238 \mathrm{~kW} \times 24 \mathrm{~h} \times 0.03 \frac{\$}{\mathrm{kWh}}}{0.443\left(\frac{\text { tonne } C_{2} \mathrm{H}_{4}}{\text { day }}\right)}=1472.89 \$\left(\frac{1}{\text { tonne } C_{2} \mathrm{H}_{4}}\right) \tag{15}
\end{equation*}
$$

For cascade MEA system, the total EPC cost should be calculated by adding the cost for the first Ag-based MEA $\left(\mathrm{CO}_{2}\right.$ to CO$)$ and the second $\mathrm{Cu}-\mathrm{NN}$-based MEA $\left(\mathrm{CO}\right.$ to $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)$.
For the first Ag-based MEA (CO_{2} to CO), we first calculate the energy input according to the method introduced above, and the input energy is 654.7 kW . The formation rate of $\mathrm{C}_{2} \mathrm{H}_{4}$ from the second $\mathrm{Cu}-\mathrm{NN}$-based MEA is 0.497 tonne per day. Here, we also take $\mathrm{Cu}-\mathrm{NN}$ as an example. The same calculation methods on bare Cu and $\mathrm{Cu}-\mathrm{NN} /$ ionomer.

$$
\begin{align*}
& \text { Cost of electricity } A_{A g}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { Power consumption }(\mathrm{kw}) \times 24 \mathrm{~h} \times \text { electricity price }\left(\frac{\$}{\mathrm{kWh}}\right)}{C_{2} H_{4} \text { Production }\left(\frac{\text { tonne } C_{2} H_{4}}{\text { day }}\right)} \\
& =\frac{654.7 \mathrm{~kW} \times 24 \mathrm{~h} \times 0.03 \frac{\$}{\mathrm{kWh}}}{0.497\left(\frac{\text { tonne } C_{2} \mathrm{H}_{4}}{\text { day }}\right)} \\
& =948.45 \$\left(\frac{1}{\text { tonne } C_{2} H_{4}}\right) \tag{16}
\end{align*}
$$

For the second $\mathrm{Cu}-\mathrm{NN}$-based MEA (CO to $\mathrm{C}_{2} \mathrm{H}_{4}$), the input energy is 412.115 kW . Then we use the same method to get the EPC cost and the value is $597 \$ /$ tonne $\mathrm{C}_{2} \mathrm{H}_{4}$.

Finally, we plus the cost from the first and the second MEA and divide the amount of $\mathrm{C}_{2} \mathrm{H}_{4}$.

$$
\begin{align*}
& \text { Cost of electricity }\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \\
& \qquad \begin{array}{c}
\text { cost of electricity } y_{A g}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \\
\\
+ \text { cost of electricity }{ }_{C u}-N N \\
\\
=948.45\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \\
\left.{\text { tonne } C_{2} H_{4}}^{\text {te }}\right)+597\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right) \\
=1545.55\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)
\end{array}
\end{align*}
$$

Cathode catalyst cost

Since we assume the physical area and lifetime of cathode and anode is $100 \mathrm{~m}^{2}$ and 1 year, then we can calculate the loading amount of copper and functional groups on the gas diffusion layer. According to price of gas diffusion layer ($862 \$ / \mathrm{m}^{2}, 22 \mathrm{BB}$, Ion power company), we can calculate the total price of the carbon support is $86200 \$$.

The total loading amount of electrodeposited copper can be calculated according to the below formula:

$$
\begin{gather*}
m_{C u}=\frac{\text { molecular weight } t_{c u}\left(\frac{g}{\text { mol }}\right) \times \text { electrodepositing current }\left(\frac{A}{m^{2}}\right) \times \text { electrodepostion time }(\mathrm{s}) \times \text { electrode } \operatorname{area}\left(\mathrm{m}^{2}\right)}{\text { transfered electrons } \times e^{-}(C) \times{\text { Avogadro constant } N_{A}\left(\text { mol }^{-1}\right)}} \begin{array}{c}
64\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times 150 \frac{\mathrm{~A}}{\mathrm{~m}^{2}} \times 300 \mathrm{~s} \times 100 \mathrm{~m}^{2} \\
2 \times 1.6 \times 10^{-19} \mathrm{C} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}
\end{array}=1494.5 \mathrm{~g}
\end{gather*}
$$

We use CuBr_{2} as the source of copper, and the needed mass of CuBr_{2} is calculated as 3367.338 g according to its molecular weight ($223.35 \mathrm{~g} / \mathrm{mol}$) (here, we assume all the copper from CuBr_{2} have been completely reduced to copper crystal).

Following this method, we can calculate the depositing amount of NN on copper, and it is around 262.7 g for $100 \mathrm{~m}^{2}$ electrode.

So, the price for electrodepositing copper can be calculated according to the unit price of chemicals (200 \$/tonne for $\mathrm{CuBr}_{2}, 1110 \$ /$ tonne for $\mathrm{KOH}, 1850 \$ /$ tonne for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Na}_{2} \mathrm{O}_{6} .2 \mathrm{H}_{2} \mathrm{O}$ and $35.1 \$ / \mathrm{g}$ for NN), and the total chemical costs is $141307 \$$ for preparing $100 \mathrm{~m}^{2}$ cathode.

By plusing the price of GDL, we can get the total cost for fabricating $100 \mathrm{~m}^{2}$ cathode and the cost is $141307 \$+$ $86200 \$=227507 \$$

As the production rate of $\mathrm{C}_{2} \mathrm{H}_{4}$ in single MEA system is 0.443 tonne per day, we can calculate the total amount of $\mathrm{C}_{2} \mathrm{H}_{4}$ produce in one year (161.69 tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ per year). Then the cathode price of producing per tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ in single MEA system is:

Cathode catalyst $\operatorname{cost}\left(\frac{\$}{\text { tonne } C_{2} \mathrm{H}_{4}}\right)=\frac{G D L \operatorname{cost}(\$)+\text { catalyst } \operatorname{cost}(\$)}{\text { total amount of } C_{2} \mathrm{H}_{4}(\text { tonne })}=\frac{227507 \$}{161.69{\text { tonne } C_{2} \mathrm{H}_{4}}}=$ $1407.1\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)$
The same calculation methods for the cascade MEA systems.

Membrane cost

As we use $100 \mathrm{~m}^{2}$ cathode, so the physical area of membrane should be at least $100 \mathrm{~m}^{2}$. And here, we calculate it based on $100 \mathrm{~m}^{2}$ membrane size and we consider the membrane lifetime is 1 year. The price of anion-exchange membrane (Sustainion® X37-50, Dioxide Materials) is $3587.66 \$ / \mathrm{m}^{2}$. So, using the total price of membrane ($358766 \$$) divides the total amount of $\mathrm{C}_{2} \mathrm{H}_{4}$ (161.69 tonne per year) in single MEA system, we can get the cost of membrane of $2218.9 \$ /$ tonne $\mathrm{C}_{2} \mathrm{H}_{4}$. The same calculation methods for the cascade MEA systems.

Anode catalyst cost

In single MEA system, we use the physical area of $100 \mathrm{~m}^{2} \mathrm{IrOx}$-coated on Ti mesh as the anode with the loading amount of IrOx of $2 \mathrm{mg} \mathrm{cm}^{-2}$. Since we obtain IrOx from $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, and then we can calculate the needed amount of $\mathrm{IrCl}_{3} \mathrm{xH}_{2} \mathrm{O}$ by assuming the conversion rate and the utilization rate of $\mathrm{IrCl}_{3 . \mathrm{xH}_{2} \mathrm{O}}$ to IrOx are 100%. According to the needed amount of $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ in $4 \mathrm{~cm}^{2}$ MEA system $(10.7 \mathrm{mg})$, we can deduce the needed amount of $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ for $100 \mathrm{~m}^{2}$ anode (2663.3 g). By multiplying the price of $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(147 \$ / \mathrm{g}, 206245$, Sigma-Aldrich), we can get the cost of $346190 \$$ of $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ for $100 \mathrm{~m}^{2}$ anode.
Next, we calculate the cost of Ti mesh. As the price of Ti mesh is $324.2 \$ \mathrm{per}^{2}$, we can get the total price of Ti mesh of $32420 \$$ for $100 \mathrm{~m}^{2}$.

Then, we can get the cost of anode catalyst for producing per tonne $\mathrm{C}_{2} \mathrm{H}_{4}$,

$$
\begin{gather*}
\text { Anode catalyst cost }\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { total anode catalyst price }(\$)}{\text { total } C_{2} H_{4} \text { produced for } 1 \text { year }(\text { tonne })}=\frac{(346190+32420) \$}{161.69 \text { tonne }} \\
=2342 \frac{\$}{\text { tonne }} \tag{20}
\end{gather*}
$$

For cascade MEA systems, we use NiFe-LDH on Ti mesh as the anode for whole system, including the first Ag-based MEA (CO_{2} to CO) and the second $\mathrm{Cu}-\mathrm{NN}$-based MEA (CO to $\mathrm{C}_{2} \mathrm{H}_{4}$). Therefore, once we calculate one anode cost, doubling the cost of anode is the total anode cost for cascade system. The total cost of anode to produce per tonne $\mathrm{C}_{2} \mathrm{H}_{4}$ can be obtained by using the total anode cost divides the produced amount of $\mathrm{C}_{2} \mathrm{H}_{4}$ from the second $\mathrm{Cu}-\mathrm{NN}$-based MEA.

Firstly, we will calculate the needed amount of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$, because we prepare NiFe - LDH catalyst from $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ by hydrothermal method (the details can be found in the method of manuscript).

Here, the costs of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ are 926 and $617 \$$ tonne ${ }^{-1}$. Next, we can calculate the total needed amount of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ according to the needed mass in $4 \mathrm{~cm}^{2}$ MEA system $\left(0.0652 \mathrm{~g}\right.$ for $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.258 g for $\left.\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)$. For $100 \mathrm{~m}^{2}$ anode, it will need 0.0163 tonne $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.0646 tonne $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$. Now, we can get the total cost of fabricating NiFe-LDH by multiplying their prices.

Finally, we can calculate the total cost for the whole cascade MEA systems (here, we take $\mathrm{Cu}-\mathrm{NN}$ as an example).

Anode catalyst $\operatorname{cost}\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)=\frac{\text { total anode catalyst price }(\$)}{\text { total } C_{2} H_{4} \text { produced for } 1 \text { year }(\text { tonne })}=$
$\frac{\text { First Ag-based MEA+Second Cu-NN based MEA }}{\text { total } \mathrm{C}_{2} \mathrm{H}_{4} \text { produced for } 1 \text { year from second } C u-N N \text { based MEA(tonne) }}=$
$\frac{2 \times\left[0.0163 \text { tonne } \times 926\left(\frac{\$}{\text { tonne }}\right)+0.0646 \text { tonne } \times 617\left(\frac{\$}{\text { tonne }}\right)+32420 \$\right]}{181.4 \text { tonne } C_{2} H_{4}}=358\left(\frac{\$}{\text { tonne } C_{2} H_{4}}\right)$

Electrolyte (anolyte) cost

Here, we are going to show the calculation for a MEA cell using $0.5 \mathrm{M} \mathrm{KHCO}_{3}$ at a cost of $750 \$$ tonne ${ }^{-1}$ and by using a fixed volume factor of 100 L electrolyte m^{-2} of electrolyzer, approximated from common lab-scale experiments. We assume the electrode surface area is $100 \mathrm{~m}^{2}$ and the lifetime is 1 year. So, the total needed volume of electrolyte is 10000 L .

With this volume, the molecular weight of potassium bicarbonate $\left(100 \mathrm{~g} \mathrm{~mol}^{-1}\right)$, and the molarity of the anolyte, we can find the mass of potassium bicarbonate required.

The cost is calculated by:

$$
\begin{align*}
& \text { Mass of electrolyte salt }(\mathrm{g}) \\
& \qquad \begin{array}{l}
\quad=\text { electrolyte molarity }\left(\frac{\mathrm{mol}}{L}\right) \times \text { electrolyte volume }(L) \\
\\
\quad \times \text { salt molecular weiught }\left(\frac{\mathrm{g}}{\mathrm{~mol}}\right)=0.5 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 10000 \mathrm{~L} \times 100 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
\quad=5 \times 10^{5} \mathrm{~g}
\end{array}
\end{align*}
$$

The total cost of anolyte is found by multiplying by the price of potassium bicarbonate and the price of water ($5 \$$ tonne $^{-1}$):

Cost of electrolyte $(\$)=$ mass of salt (tonne) \times price of salt $\left(\frac{\$}{\text { tonne }}\right)+$ water volume $(L) \times$ water price $\left(\frac{\$}{\mathrm{~kg}}\right)=0.5$ tonne $\times 750 \frac{\$}{\text { tonne }}+10000 \mathrm{~L} \times 0.005 \frac{\$}{\mathrm{~kg}}=$

425 \$

Here, we do not consider the capital recovery factor of electrolyte. Finally, we go to find the price of producing per tonne of $\mathrm{C}_{2} \mathrm{H}_{4}$ on $\mathrm{Cu}-\mathrm{NN}$ electrode,

Cost of electrolyte $\left(\frac{\$}{\text { tonne }}\right)=\frac{\text { cost of electrolyte }(\$)}{\text { produced } C_{2} H_{4} \text { in one year (tonne) }}=\frac{425 \$}{161.9 \text { tonne } C_{2} H_{4}}=$ $2.63\left(\frac{\$}{\text { tonne }}\right)$
Note that for cascade MEA system, 1 M KOH electrolyte was used with a cost of $1000 \$$ tonne $^{-1}$.

Ethanolamine cost

For cascade MEA system, we use $30 \mathrm{wt} \%$ ethanolamine solution to adsorb the unreacted CO_{2} from the outlet of Ag-based MEA. Since $40 \mathrm{ml} 30 \mathrm{wt} \%$ ethanolamine solution is needed to completely absorb the unreacted CO_{2} for the $4 \mathrm{~cm}^{2}$ electrode MEA electrolyzer, around $10000 \mathrm{~L} 30 \mathrm{wt} \%$ ethanolamine solution is required for $100 \mathrm{~m}^{2}$ electrode MEA electrolyzer. After dividing the concentration ($30 \mathrm{wt} \%$), we can get the needed amount pure ethanolamine of 0.3 tonne. As the cost of ethanolamine is $1500 \$ /$ tonne, we can calculate the total cost of 450 $\$$ for pure ethanolamine. Then we calculate the water mass and the mass is 9.7 tonne. Multiplying the cost of water ($5 \$ /$ tonne), we can get the total water cost of $48.5 \$$. So, the total cost of $498.5 \$$ for $10000 \mathrm{~L} 30 \mathrm{wt} \%$ ethanolamine solution. Dividing the $\mathrm{C}_{2} \mathrm{H}_{4}$ production on $\mathrm{Cu}-\mathrm{NN}$ electrode, we can get the final cost. Here, we take $\mathrm{Cu}-\mathrm{NN}$ as an example

$$
\begin{gather*}
{\text { ethanolamine } \operatorname{cost}_{C u-N N}\left(\frac{\$}{\text { tonne }}\right)=\frac{\text { total cost }(\$)}{C_{2} H_{4} \text { production }(\text { tonne })}=\frac{498.5 \$}{181.4 \text { tonne }}}_{=2.75\left(\frac{\$}{\text { tonne }}\right)}
\end{gather*}
$$

4.8 Supplementary Information

(a)

(b)

Supplementary Fig. 1 The possible reaction mechanisms of diazonium salts on copper under electrochemical reductive current.
These mechanisms have been widely proved by many researches ${ }^{1-5}$.

Supplementary Fig. 2 Time-of-flight secondary-ion mass spectrometry (TOF-SIMS) Spectra of $\mathrm{Cu}-\mathrm{X}\left(\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}\right.$, $\mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\left.\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)$.

Time-of-flight secondary-ion mass spectrometry (TOFSIMS) data were acquired using a TOF-SIMS V spectrometer (IONTOF GmbH). The analysis chamber was maintained at less than $5 \times 10^{-7} \mathrm{~Pa}$ under operating conditions. The total primary ion flux was below 1012 ions cm^{2} to ensure static conditions. A pulsed $25 \mathrm{keV} \mathrm{Bi}+$ primary ion source (Liquid Metal Ion Gun, LMIG) at a current of about 1 pA (high current bunched mode), raster over a scan area of $500 \times 500 \mu \mathrm{~m}$, was used as the analysis beam.

Supplementary Fig. 3 The configurations for different functional groups bonded on copper (side view), a. Cu, b. Cu$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, c. $\mathrm{Cu}-\mathrm{OCH}_{3}$, d. $\mathrm{Cu}-\mathrm{N}$, e. $\mathrm{Cu}-\mathrm{NN}$, f. $\mathrm{Cu}-\mathrm{NNN}, \mathrm{g} . \mathrm{Cu}-\mathrm{Br}$, and h. $\mathrm{Cu}-\mathrm{NO}_{2}$.

Supplementary Fig. 4 The configurations for different functional groups bonded on copper (top view). a. Cu, b. Cu$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, c. $\mathrm{Cu}-\mathrm{OCH}_{3}$, d. $\mathrm{Cu}-\mathrm{Br}$, e. $\mathrm{Cu}-\mathrm{N}$, f. $\mathrm{Cu}-\mathrm{NN}$, g. $\mathrm{Cu}-\mathrm{NNN}$, and h. $\mathrm{Cu}-\mathrm{NO}_{2}$.

$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$

OCH_{3}

${ }^{4.238}$

NO_{2}

N

NN

NNN

Supplementary Fig. 5 Formal Bader charges of different aryl diazonium salts on copper.

Supplementary Fig. 6 The models of CO_{2} molecular adsorbed on neighboring $\mathrm{Cu}^{\delta+}(\delta=0,0.10,0.12$ and 0.18$)$ atoms around NN -bonded Cu atom in NN bonded Cu system.

Supplementary Fig. 7 Geometries of CO dimerization process from initial status, transition state to final state. Cu (a) and $\mathrm{Cu}-\mathrm{NN}(\mathrm{b})$.

Supplementary Fig. 8 The inserted windows between the initial state (IS) and the final state (FS) to find the transition state (TS) when calculating CO dimerization process on both Cu (right) and $\mathrm{Cu}-\mathrm{NN}$ (left).

* CO * CO

Supplementary Fig. 9 The oblique view of electron density difference plots for $\mathrm{Cu}-\mathrm{NN}$ and Cu with two adsorbed *CO $\left(a_{1}\right.$ and $\left.b_{1}\right)$ and $* \operatorname{OCCO}\left(a_{2}\right.$ and $\left.b_{2}\right)$, as well as one water layer, respectively. Yellow contours represent charge accumulations, and blue contours denote charge depressions.

Supplementary Fig. 10 The top view of electron density difference plots for $\mathrm{Cu}-\mathrm{NN}$ and Cu with two adsorbed ${ }^{*} \mathrm{CO}\left(\mathrm{a}_{1}\right.$ and $\left.b_{1}\right)$ and $* \mathrm{OCCO}\left(\mathrm{a}_{2}\right.$ and $\left.\mathrm{b}_{2}\right)$, as well as one water layer, respectively. Yellow contours represent charge accumulations, and blue contours denote charge depressions.

Supplementary Fig. 11 The side view of electron density difference plots for $\mathrm{Cu}-\mathrm{NN}$ and Cu with two adsorbed ${ }^{*} \mathrm{CO}\left(\mathrm{a}_{1}\right.$ and $\left.b_{1}\right)$ and $* \mathrm{OCCO}\left(\mathrm{a}_{2}\right.$ and $\left.\mathrm{b}_{2}\right)$, as well as one water layer, respectively. Yellow contours represent charge accumulations, and blue contours denote charge depressions.

Supplementary Fig. 12 The adsorption energy of CO_{2} and CO on $\mathrm{Cu}-\mathrm{X}$ catalysts $\left(\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}\right.$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$.

Supplementary Fig. 13 Reaction pathways for ethylene vs ethanol on Cu surface.

Supplementary Fig. 14 Reaction pathways for ethylene vs ethanol on $\mathrm{Cu}-\mathrm{NN}$ surface.

Supplementary Fig. 15 Energy profile to form ethylene (blue line) and ethanol (orange line) for pure Cu and $\mathrm{Cu}-\mathrm{NN}$.

Supplementary Fig. 16 Energy profile to form ethylene (blue line) and ethanol (gray line) for a $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, b Cu- OCH_{3}, c $\mathrm{Cu}-\mathrm{N}, \mathrm{d} \mathrm{Cu}-\mathrm{NNN}$, e $\mathrm{Cu}-\mathrm{Br}$ and $\mathrm{f} \mathrm{Cu}-\mathrm{NO}_{2}$.

Supplementary Fig. 17 The applied field effects on the free energy of the selectivity-determining step of ethylene and ethanol over $\mathrm{Cu}-\mathrm{NN}$ surface.

Supplementary Fig. 18 The free energy of hydrogen evolution reaction on both bare Cu and $\mathrm{Cu}-\mathrm{NN}$ catalysts.

Supplementary Fig. 19 XPS of different diazonium salts grated copper catalysts.

Supplementary Fig. 20 Low-magnification scanning electron microscopy (SEM) images for the pristine and NN functionalized Cu catalysts. (a) pristine $(\mathrm{Cu}),\left(\mathrm{b}_{1}\right) \mathrm{Cu}-\mathrm{NN}$ and $\left(\mathrm{b}_{2}\right)$ the cross-section of $\mathrm{Cu}-\mathrm{NN}$.

Supplementary Fig. 21 XRD of $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts.

Supplementary Fig. 22 Ex-situ Raman spectra of different diazonium salts functionalized catalysts.

Supplementary Fig. 23 Medium magnification TEM image showing the presence of the functionalized layer at the surface of the $\mathrm{Cu}-\mathrm{NN}$ catalyst (a). Monochromated EELS spectrum acquired at the surface of the $\mathrm{Cu}-\mathrm{NN}$ catalysts. The inset shows the corresponding ADF image acquired simultaneously as the EELS dataset. The red rectangle highlights the area used to extract the EELS spectrum (b).

Supplementary Fig. 24 Scanning electron microscopy (SEM) images for the $\mathrm{Cu}-\mathrm{NN}(\mathrm{a})$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer(b) catalysts.

Supplementary Fig. 25 Ex-situ Raman spectra of different catalysts.

Supplementary Fig. 26 Energy-dispersive X-ray spectroscopy (EDX) elemental mapping of ionomer coated $\mathrm{Cu}-\mathrm{NN}$ catalyst.

Supplementary Fig. 27 Comparisons of the Faradaic efficiencies on the different catalysts measured in the MEA reactors. Bare $\mathrm{Cu}(\mathrm{a}), \mathrm{Cu}-\mathrm{NNN}(\mathrm{b}), \mathrm{Cu}^{-\mathrm{OCH}_{3}}$ (c), $\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{~d}), \mathrm{Cu}-\mathrm{N}(\mathrm{e}), \mathrm{Cu}-\mathrm{Br}(\mathrm{f}), \mathrm{Cu}-\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{Cu}-\mathrm{NN}(\mathrm{h})$, as well as $\mathrm{Cu}-$ NN/ionomer (i) electrodes.

Supplementary Fig. 28 The relationships among the Faradaic efficiency of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{a}), \mathrm{CO}(\mathrm{b})$ and the concentrations of NN, as well as the related thickness of functional groups (NN). And the High-resolution transmission electron microscope (HRTEM) micrograph (c to g) of $\mathrm{Cu}-\mathrm{NN}$ electrodes with different concentrations of NN .

(b) The relationship between Selectivity ${ }_{\mathrm{C} 2 \mathrm{H} 4} /$ Selectivity $_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}}$ and theoretical valences of Cu on $\mathrm{Cu}-\mathrm{X}$ catalysts. (The X in $\mathrm{Cu}-\mathrm{X}$ catalysts refers to $\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups).

Supplementary Fig. 30 Electrocatalytic CO2RR performance of the MEA reactor using the $\mathrm{Cu} /$ ionomer catalyst.

Supplementary Fig. 31 Electrocatalytic CO2RR properties of the MEA reactors using the different Cu-X catalysts (X refers to $\mathrm{Br}, \mathrm{OCH}_{3}, \mathrm{NO}_{2}, \mathrm{NN}, \mathrm{NNN}, \mathrm{N}, \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ and NN /ionomer). (a) $\mathrm{C}_{2} \mathrm{H}_{4}$ specific current density, (b) total current density.

Supplementary Fig. 32 Ex-situ Raman spectra of Cu -NN after reaction (a) and medium magnification TEM image showing the presence of the functionalized layer at the surface of the $\mathrm{Cu}-\mathrm{NN}$ catalyst (b).

Supplementary Fig. 33 CV s for different samples measured in $100 \mathrm{mM} \mathrm{HClO} 4+1 \mathrm{mM} \mathrm{Pb}(\mathrm{ClO} 4) 2$ (a), partial ethylene current density normalized to Cu ECSA for Cu and $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts for CO 2 RR in MEA reactors (b).

Supplementary Fig. 34 CV curves for different Cu single crystals measured in $100 \mathrm{mM} \mathrm{HClO}_{4}+2 \mathrm{mM} \mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$.

Supplementary Fig. 35 The high-resolution XPS spectra of $\mathrm{Cu} 2 p$ in $\mathrm{Cu}-\mathrm{X}$ catalysts X refers to $\mathrm{NO}_{2}, \mathrm{Br}$, NNN, NN, N, OCH_{3} and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups.

Supplementary Fig. 36 Cu K-edge X-ray absorption near edge structure (XANES) spectra(a) and R space (b) of the different $\mathrm{Cu}-\mathrm{X}$ catalysts. (c) the first derivatives of the Cu K-edge XANES spectra of $\mathrm{Cu}-\mathrm{X}$ catalysts. X refers to $\mathrm{NO}_{2}, \mathrm{Br}$, $\mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups.
a

b

Supplementary Fig. 37 In operando Cu K-edge XANES spectra of $\mathrm{Cu}-\mathrm{NN}$ catalyst under different reductive potentials ($0.93 \mathrm{~V},-0.88 \mathrm{~V}$ and -0.83 V versus RHE) during $\mathrm{CO}_{2} \mathrm{RR}$ for 15 minutes(a), and the related first derivatives of the Cu K edge XANES spectra (b). Bulk Cu foil and $\mathrm{Cu}_{2} \mathrm{O}$ are listed as references.

Supplementary Fig. 38 Comparisons of the Faradaic efficiencies on the different catalysts measured in the H-cell reactors. The Faradaic efficiency for the different products on bare $\mathrm{Cu}(\mathrm{a}), \mathrm{Cu}-\mathrm{NN}(\mathrm{b}), \mathrm{Cu}-\mathrm{NNN}(\mathrm{c}), \mathrm{Cu}-\mathrm{OCH}_{3}(\mathrm{~d}), \mathrm{Cu}-\mathrm{N}(\mathrm{e}), \mathrm{Cu}-$ $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{f}), \mathrm{Cu}-\mathrm{Br}(\mathrm{g})$, and $\mathrm{Cu}-\mathrm{NO}_{2}(\mathrm{~h})$ electrodes.

Supplementary Fig. 39 Operando Raman spectra of (a) NN-, (b) NNN-, (c) $\mathrm{OCH}_{3}{ }^{-}$, (d) $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2^{-}}$, (e) $\mathrm{N}-$, (f) $\mathrm{Br}-$, (g) $\mathrm{NO}_{2^{-}}$ functionalized Cu electrodes compared with (h) pristine Cu . The operando Raman measurements were carried out between -0.48 V and -0.98 V vs. RHE in a CO 2 -saturated KOH solution.

Supplementary Fig. 40 Operando Raman spectra of $\mathrm{Cu}-\mathrm{NN}$ sample tested in an Ar saturated KOH electrolyte solution.

Supplementary Fig. 41 Operando Raman spectra of the $\mathrm{C} \equiv \mathrm{O}$ stretch region of $\mathrm{Cu}-\mathrm{X}$ electrodes. The asymmetric band is deconvoluted into bands for bridge $\mathrm{CO}\left(\right.$ at $\sim 2030 \mathrm{~cm}^{-1}$), low frequency CO* (LFB-CO*, at $\sim 2060 \mathrm{~cm}^{-1}$) and high frequency CO* (HFB-CO*, at $\sim 2095 \mathrm{~cm}^{-1}$) by Lorentzian fitting. The ratio between the intensities of the HFB-CO* and LFB-CO* was summarized in Supplementary Table 13.

Supplementary Fig. 42 TGA plots of $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}, \mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ and chemical NN in N_{2} atmosphere(a), and $\mathrm{CO}_{2}-\mathrm{TPD}$ profiles of $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}, \mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, chemical NN and chemical $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}(\mathrm{~b})$.

Supplementary Fig. 43 Micromorphology and electrochemical performance of NiFe LDH on Ti mesh. High (a_{1}) and low $\left(\mathrm{a}_{2}\right)$ magnification scanning electron microscopy (SEM) images for NiFe LDH on Ti mesh, and the bare Ti mesh sample $\left(b_{1}\right)$ and $\left(b_{2}\right)$. (c) the different LSV curves of IrOx and NiFe LDH on Ti mesh in different electrolyte, (d) the two-electrode stability test of NiFe LDH electrode in 1 M KOH with the potential of 2.4 V .

Supplementary Fig. $44 \mathrm{CO}_{2}$-to-CO conversion on an Ag electrode in a MEA reactor. The $\mathrm{FE}(\mathrm{a})$ and specific current density(b) of CO and H_{2}, and the relationship between CO concentration and total current density(c).

Supplementary Fig. 45 CO -to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion in the cascade MEA system by using IrOx as the anode and bare $\mathrm{Cu}(\mathrm{a})$, $\mathrm{Cu}-\mathrm{NN}(\mathrm{b})$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer(c) as the cathodes.

Supplementary Fig. 46 CO-to- $\mathrm{C}_{2} \mathrm{H}_{4}$ conversion in the cascade MEA system by using NiFe LDH on Ti mesh as the anode and bare $\mathrm{Cu}(\mathrm{a})$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer(b) as the cathodes.

Supplementary Fig. 47 Comparison in energy efficiency on different samples (Cu-X, X refers to NN, NN/ionomer). (a) The relationships between energy efficiency and current density with different samples in both single MEA electrolyzer and cascade MEA system (the half belongs to $\mathrm{CO}_{2} \mathrm{RR}$, and the full belongs to CORR), (b) the difference of energy efficiency on different samples by using IrOx and NiFe LDH as the anode in cascade MEA system condition.

Supplementary Fig. 48 Structural and elemental composition of the functionalized commercial $\mathrm{Cu}(2 \sim 3.5 \mu \mathrm{~m})$ catalysts. Scanning electron microscope (SEM) images of commercial Cu (hereafter, cCu) (a_{1} and a_{2}) and NN modified commercial $\mathrm{Cu}(\mathrm{cCu}-\mathrm{NN})\left(\mathrm{b}_{1}\right.$ and $\left.\mathrm{b}_{2}\right)$ catalysts on gas diffusion electrodes (GDE). High-resolution transmission electron microscope (HR-TEM) micrograph $\left(\mathrm{c}_{1}\right)$ of $\mathrm{cCu}-\mathrm{NN}$ electrode. EELS spectrum of the $\mathrm{C}-\mathrm{K}$ edge with fine structures characteristics of carbon linked to heteroatoms from NN layer on the cCu surface (inset). HAADF-STEM image of the cCu surface of NNfunctionalized $\mathrm{cCu}\left(\mathrm{c}_{2}\right)$.

Supplementary Fig. 49 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image(a) and High-resolution transmission electron microscope (HR-TEM) micrograph (b) of Ag-NN electrode. EELS spectrum of the C-K edge with fine structures characteristics of carbon linked to heteroatoms from NN layer on the Ag surface and deeper (c). X-ray photoelectron spectra for Ag -NN and bare Ag catalysts, showing shifts in the ${\mathrm{Ag} 3 \mathrm{~d}_{5 / 2}}^{2}$ peaks(d). Correlation of the XPS shift with the $\mathrm{FE}_{\mathrm{CO}}$ (e). Ex-situ Ag K-edge X-ray absorption near edge structure (XANES) spectra of pristine and functionalized Ag-NN electrodes(f). Inset: the first derives of silver for the corresponding electrodes.

Supplementary Fig. 50 Ex-situ Raman spectra of $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$ and $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$ - $\mathrm{NN}(\mathrm{a})$. CO2RR performance of the $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$ and $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$-NN electrodes in MEA electrolyzer (b). $\mathrm{j}-\mathrm{V}$ plots of the partial current densities
for the C 2 H 4 product (c). The copper LMM Auger spectra of the $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$ and $\mathrm{cCu}(2 \sim 3.5 \mu \mathrm{~m})$ - NN electrodes (d). The amounts of Cu 2 O and Cu contributions were estimated from the integrated area of the corresponding curves. Copper K-edge XANES spectra of cCu and $\mathrm{cCu}-\mathrm{NN}$ catalysts after being electrochemically reduced (e). Inset: average oxidation state of copper in $\mathrm{cCu}-\mathrm{NN}$ obtained from copper K-edge XANES. The edge position of each sample is determined from the intercept of the main edge and pre-edge contributions. Copper R space (f) and the first derivatives of the Cu K-edge XANES spectra (g) of cCu and $\mathrm{cCu}-\mathrm{NN}$ catalysts.

Supplementary Fig. $51 \mathrm{CO}_{2}$-to-CO conversion on $\mathrm{Ag}-\mathrm{NN}(\mathrm{a}), \mathrm{Ag}(\mathrm{b})$ and GDL-NN electrodes(c) in a MEA reactor.
a

New diazonium

Supplementary Fig. 52 The molecule's structures of new diazonium salt(a), NN(b) and N(c). The Faradaic efficiency (d) and current density(e) from the new diazonium salt modified copper catalyst measured in the MEA reactor.

Supplementary Table 1 Formal theoretical valences of Cu after modifying different electron-withdrawing ability of the substituted phenyl groups.

Samples	$\mathbf{N}\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}}\right)_{\mathbf{2}}$	$\mathbf{O C H}_{\mathbf{3}}$	\mathbf{N}	$\mathbf{N N}$	$\mathbf{N N N}$	$\mathbf{B r}$	$\mathbf{N O 2}$
$\mathbf{C u}$ theoretical valences	+0.149	+0.206	+0.219	+0.260	+0.493	+0.630	+0.787

Supplementary Table 2 The valence of nearby Cu atoms, the distance of nearby Cu atoms to $\mathrm{Cu}-\mathrm{NN}$ atom, and the change of CO_{2} adsorption energy on different valence Cu atoms in NN functionalized Cu catalyst.

Atoms	valence ($\delta \mathbf{)}$	distance $(\AA \mathbf{\AA})$	$\mathbf{C O}_{\mathbf{2}}$ adsorption energy (eV)
Cu 05	0	9.26073	-0.399
	0	9.26073	-0.391
	0	9.26073	-0.385
Cu 66	0.1	6.80631	-0.38
	0.1	6.80631	-0.388
Cu 60	0.12	5.16821	-0.399
	0.12	5.16821	-0.399
	0.18	2.59728	-0.45
	0.18	2.59728	-0.468
	0.18	2.59728	-0.468

Supplementary Table 3 Activation energies $\left(E_{a}\right)$ and enthalpy changes (ΔH) of CO dimerization on Cu and $\mathrm{Cu}-\mathrm{NN}$.

	$E_{a}(\mathbf{e V})$	$\boldsymbol{\Delta H}(\mathbf{e V})$
Cu	1.0129	0.7898
$\mathrm{Cu}-\mathrm{NN}$	0.7552	0.3329

Supplementary Table 4 The adsorption energies of CO and CO_{2} on $\mathrm{Cu}-\mathrm{X}$ catalysts (X refers to $\mathrm{N}_{(}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{OCH}_{3}, \mathrm{~N}, \mathrm{NN}$, $\mathrm{NNN}, \mathrm{Br}$, and NO_{2}).

Samples	CO adsorption energy(eV)	$\mathbf{C O}_{2}$ adsorption energy(eV)
$\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	-1.10472	-0.3194
$\mathrm{Cu}-\mathrm{OCH}_{3}$	-1.16435	-0.336
$\mathrm{Cu}-\mathrm{N}$	-1.20232	-0.3668
$\mathrm{Cu}-\mathrm{NN}$	-1.21724	-0.38057
$\mathrm{Cu}-\mathrm{NNN}$	-1.19099	-0.34868
$\mathrm{Cu}-\mathrm{Br}$	-1.12475	-0.36483
$\mathrm{Cu}-\mathrm{NO}_{2}$	-1.12089	-0.37045
$\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	-1.10472	-0.3194

Supplementary Table 5 Free energies for $* \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$ (prebranch), ${ }^{*} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ (ethanol pathway), and $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}$ * (ethylene pathway) on $\mathrm{Cu}-\mathrm{X}$ catalysts (X refers to $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}, \mathrm{OCH}_{3}, \mathrm{~N}, \mathrm{NN}, \mathrm{NNN}, \mathrm{Br}$, and NO_{2}) by DFT calculations.

	Valence $(\mathbf{C u})$	$\mathbf{C}_{2} \mathbf{H}_{4}(\mathbf{g})+\mathbf{O}^{*}$ (ethylene pathway, $\mathbf{e V})$	${ }^{*} \mathbf{C}_{2} \mathbf{H}_{4} \mathbf{O}$ (ethanol pathway, eV)	$\boldsymbol{E}_{\text {ethylene pathway }} \boldsymbol{E}_{\text {ethanol pathway }}$
Cu	0	-0.988	0.325	-1.313
$\mathrm{Cu}-$ $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	+0.134	-0.879	0.352	-1.231
$\mathrm{Cu}-$ OCH_{3}	+0.188	-0.984	0.36	-1.344
$\mathrm{Cu}-\mathrm{N}$	+0.214	-1.223	0.311	-1.534
$\mathrm{Cu}-\mathrm{NN}$	+0.268	-1.625	0.056	-1.681
$\mathrm{Cu}-\mathrm{NNN}^{2}$	+0.516	-1.377	0.006	-1.383
$\mathrm{Cu}-\mathrm{Br}$	+0.663	-1.268	-0.227	-1.041
$\mathrm{Cu}-\mathrm{NO}_{2}$	+0.757	-1.274	-0.534	-0.74

Supplementary Table 6 The applied field effects on the free energy of the selectivity-determining step of ethylene and ethanol over $\mathrm{Cu}-\mathrm{NN}$ surface.

Electrical field $(\mathbf{e V} / \AA \AA)$	Ethylene path way	Ethanol path way
-0.75	-1.50762	0.32507
-0.5	-1.41018	0.33243
-0.45	-1.39522	0.31126
-0.4	-1.26121	0.2266
-0.35	-1.28159	0.28601
-0.3	-1.19885	0.28027
-0.25	-1.19447	0.29642
-0.2	-1.20138	0.27858
-0.15	-1.17853	0.27775
-0.1	-1.11834	0.29096
-0.05	-0.96478	0.27791
0	-0.98297	0.33026
0.05	-0.96875	0.29032
0.10	-0.97745	0.25988
0.15	-0.9804	0.26444
0.2	-0.98421	0.27729
0.25	-0.98002	0.27104
0.30	-0.99817	0.28713

0.35	-1.00016	0.30183
0.40	-1.00129	0.02542
0.45	-1.00668	0.58109
0.5	-1.00224	0.31297
0.75	-1.02795	0.31199

Supplementary Table 7 The Free energy of HER on bare Cu and $\mathrm{Cu}-\mathrm{NN}$ catalysts.

Samples	Configurations	Free energy (eV)
	Fcc	0.269
Cu	Hcp	0.333
	Top	0.306
	Fcc-close	0.398
$\mathrm{Cu}-\mathrm{NN}$	Fcc-far	0.454
	Hcp-close	0.408
	Hcp-far	0.458
	Top-close	0.460
	Top-far	0.483

Supplementary Table 8 Summary of the atomic ratio of $\mathrm{Cu}, \mathrm{N}, \mathrm{O}, \mathrm{Br}$ and C on $\mathrm{Cu}-\mathrm{X}$ electrodes from XPS results (X refers to $\mathrm{Br}, \mathrm{OCH}_{3}, \mathrm{NO}_{2}, \mathrm{NN}, \mathrm{NNN}, \mathrm{N}, \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{NN} /$ ionomer $)$.

Electrodes	$\mathbf{C u}$	\mathbf{C}	$\mathbf{a t o m i c}$ ratio (at.\%)		
Pristine	100	$/$	\mathbf{N}	\mathbf{O}	$\mathbf{B r}$
$\left.\mathrm{Cu}-\mathrm{N}^{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	62.4	30.2	7.4	$/$	$/$
$\mathrm{Cu}-\mathrm{OCH}_{3}$	71.2	21.5	4.3	$/$	$/$
$\mathrm{Cu}-\mathrm{N}$	51.6	39.0	7.2	3.0	$/$
$\mathrm{Cu}-\mathrm{NN}$	39.3	51.0	9.7	$/$	$/$
$\mathrm{Cu}-\mathrm{NNN}$	43.4	38.7	11.8	6.1	$/$
$\mathrm{Cu}-\mathrm{Br}^{2}$	73.0	19.7	4.1	$/$	1
$\mathrm{Cu}-\mathrm{NO}_{2}$	65.8	19.8	7.8	6.6	$1 / 2$

Supplementary Table 9 Summary of the estimated FEs for $\mathrm{Cu}-\mathrm{X}$ electrodes measured at different applied potentials in the MEA reactors (X refers to $\mathrm{Br}, \mathrm{OCH}_{3}, \mathrm{NO}_{2}, \mathrm{NN}, \mathrm{NNN}, \mathrm{N}, \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{NN} /$ ionomer). The standard deviation of the measurements was estimated from three independent samples.

Electrode		Faradaic efficiency (FE, \%)				
Pristine (Cu)		H_{2}	CO	HCOOH	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
	-3.0	64.2 ± 1.0	31.9 ± 1.0	0	4.1 ± 0.9	0
	-3.2	57.4 ± 2.3	29.8 ± 0.9	0	11.4 ± 2.7	0
	-3.4	47.9 ± 2.5	27.9 ± 0.7	1.8 ± 0.6	19.4 ± 1.7	0
	-3.5	41.7 ± 0.9	26.6 ± 0.8	2.2 ± 0.6	26.5 ± 1.6	1.8 ± 0.5
	-3.55	40.8 ± 1.6	25.3 ± 0.9	2.8 ± 0.6	28.0 ± 1.3	3.6 ± 1.1
	-3.6	37.1 ± 1.2	24.3 ± 1.2	3.2 ± 0.7	29.8 ± 1.4	4.2 ± 0.9
	-3.65	36.9 ± 1.9	22.2 ± 1.4	5.1 ± 0.6	31.9 ± 2.3	5.7 ± 1.1
	-3.7	35.9 ± 1.5	21.7 ± 0.7	4.5 ± 0.8	35.3 ± 2.3	7.1 ± 2.0
	-3.75	32.8 ± 0.4	19.6 ± 0.7	3.2 ± 0.8	38.4 ± 1.5	8.1 ± 2.1
	-3.8	32.8 ± 0.4	18.4 ± 0.5	2.1 ± 0.7	40.2 ± 1.4	11.9 ± 3.0
	-3.85	37.9 ± 0.8	17.5 ± 0.5	1.4 ± 0.5	38.6 ± 0.8	10.6 ± 1.0
	-3.9	43.9 ± 1.1	16.4 ± 0.6	1.5 ± 0.5	36.2 ± 0.4	8.7 ± 2.0
	-4.0	48.5 ± 1.7	14.1 ± 1.0	1.0 ± 0.6	32.7 ± 0.4	4.9 ± 0.3
$\mathrm{Cu}-$	-3.0	47.3 ± 1.1	12.3 ± 0.8	0	32.0 ± 5.9	0
	-3.2	42.9 ± 1.3	10.6 ± 1.1	0	43.2 ± 1.6	0
	-3.4	38.1 ± 1.2	8.7 ± 1.1	0.9 ± 0.2	52.7 ± 2.6	0.6 ± 0
	-3.5	32.1 ± 0.2	9.1 ± 1.2	1.0 ± 0.5	57.9 ± 2.9	0.6 ± 0.3
	-3.55	28.4 ± 0.7	7.9 ± 1.5	1.2 ± 0.5	63.0 ± 2.7	0.9 ± 0.5
	-3.6	24.6 ± 0.9	6.2 ± 1.3	1.4 ± 0.4	67.8 ± 3.1	1.4 ± 0.3
	-3.65	21.7 ± 1.2	5.3 ± 0.5	1.5 ± 0.8	72.9 ± 2.9	1.9 ± 0.5
	-3.7	23.7 ± 0.7	4.6 ± 0.6	1.1 ± 0.4	68.3 ± 3.1	2.3 ± 1.1
	-3.75	26.6 ± 0.5	4.1 ± 0.6	0.7 ± 0.5	65.4 ± 2.3	3.2 ± 1.3
	-3.8	37.6 ± 1.0	3.3 ± 0.6	0.7 ± 0.4	57.9 ± 1.7	2.5 ± 1.4

	-3.85	47.9 ± 0.8	2.2 ± 0.5	0.6 ± 0.4	49.3 ± 2.7	2.0 ± 0.8
	-3.9	53.3 ± 0.8	1.8 ± 0.5	0.6 ± 0.4	42.7 ± 1.5	1.6 ± 0.4
	-4.0	57.7 ± 0.6	1.8 ± 0.1	0.5 ± 0.2	39.0 ± 0.8	1.5 ± 0.7
Cu-NNN	-3.0	54.3 ± 1.1	4.4 ± 0.9	0	32.1 ± 6.0	0
	-3.2	49.5 ± 1.3	4.4 ± 1.1	0	38.9 ± 1.7	0
	-3.4	42.8 ± 1.2	5.2 ± 1.1	1.1 ± 0.4	45.1 ± 2.6	1.4 ± 0.4
	-3.5	38.4 ± 0.2	6.1 ± 1.2	2.1 ± 0.2	49.9 ± 2.9	1.3 ± 0.8
	-3.55	34.9 ± 0.7	6.4 ± 1.5	2.6 ± 0.2	53.9 ± 2.7	1.4 ± 0.7
	-3.6	32.3 ± 0.9	7.3 ± 1.3	3.5 ± 0.3	57.9 ± 3.1	1.7 ± 0.8
	-3.65	26.7 ± 1.2	6.3 ± 0.5	3.8 ± 1.0	61.5 ± 2.9	2.4 ± 0.8
	-3.7	23.4 ± 0.7	5.8 ± 0.6	3.2 ± 0.9	66.6 ± 3.1	3.8 ± 0.9
	-3.75	19.5 ± 0.5	4.9 ± 0.6	3.3 ± 0.3	70.4 ± 2.3	4.6 ± 1.2
	-3.8	16.2 ± 1.0	4.2 ± 0.6	2.3 ± 0.4	75.1 ± 1.7	5.1 ± 1.2
	-3.85	19.2 ± 0.8	3.7 ± 0.5	1.2 ± 0.5	71.2 ± 2.7	4.9 ± 1.3
	-3.9	23.3 ± 0.8	3.4 ± 0.5	1.5 ± 0.4	68.2 ± 1.5	3.8 ± 1.1
	-4.0	27.2 ± 2.0	2.5 ± 1.0	1.1 ± 1.0	61.3 ± 2.9	2.7 ± 1.5
$\mathrm{Cu}-\mathrm{OCH}_{3}$	-3.0	33.0 ± 7.7	22.8 ± 1.1	0	40.2 ± 3.1	0
	-3.2	26.2 ± 2.1	24.3 ± 1.9	0	48.9 ± 4.3	0
	-3.4	23.6 ± 2.7	20.1 ± 2.1	0.9 ± 0.3	53.6 ± 5.6	1.0 ± 1.9
	-3.5	23.2 ± 3.4	15.4 ± 1.7	0.9 ± 0.8	57.3 ± 3.2	1.5 ± 2.7
	-3.55	18.7 ± 2.9	10.3 ± 1.6	1.3 ± 0.6	65.4 ± 3.7	2.9 ± 4.2
	-3.6	16.4 ± 3.2	9.0 ± 4.7	1.4 ± 0.8	72.2 ± 5.3	3.1 ± 3.3
	-3.65	15.3 ± 3.4	6.7 ± 1.6	1.5 ± 0.8	78.0 ± 2.7	3.8 ± 4.5
	-3.7	14.3 ± 3.5	5.3 ± 2.3	1.3 ± 0.8	76.4 ± 4.1	5.1 ± 4.6
	-3.75	16.9 ± 4.2	3.6 ± 1.0	1.2 ± 0.7	74.3 ± 2.7	3.8 ± 3.0
	-3.8	19.5 ± 5.4	3.2 ± 1.9	1.4 ± 0.6	71.1 ± 4.9	3.3 ± 3.1
	-3.85	22.8 ± 7.1	2.7 ± 1.9	0.8 ± 0.7	70.6 ± 2.2	2.3 ± 3.1
	-3.9	24.1 ± 8.4	2.4 ± 0.8	1.1 ± 0.8	70.0 ± 3.3	1.9 ± 2.9
	-4.0	29.3 ± 0.9	2.5 ± 0.3	0.8 ± 0.2	65.6 ± 0.6	1.2 ± 0.4
$\mathrm{Cu}-\mathrm{N}$	-3.0	47.3 ± 2.5	35.4 ± 3.0	0	15.5 ± 2.0	0

	-3.2	37.2 ± 2.5	34.1 ± 1.7	0.3 ± 0.1	22.5 ± 1.7	0
	-3.4	25.9 ± 1.4	31.8 ± 1.4	0.4 ± 0.1	36.6 ± 1.4	1.1 ± 0.1
	-3.5	22.0 ± 1.0	24.6 ± 0.5	0.5 ± 0.1	43.7 ± 0.6	1.3 ± 0.4
	-3.55	20.8 ± 1.3	19.5 ± 1.4	0.7 ± 0.2	51.7 ± 0.9	1.3 ± 0.6
	-3.6	19.1 ± 1.2	14.2 ± 0.1	1.1 ± 0.7	61.7 ± 2.3	2.3 ± 0.8
	-3.65	17.8 ± 1.0	11.0 ± 1.1	1.2 ± 0.8	68.6 ± 2.5	2.5 ± 0.7
	-3.7	16.3 ± 0.6	9.3 ± 0.4	1.2 ± 0.4	72.7 ± 2.0	2.6 ± 1.0
	-3.75	15.3 ± 0.4	7.1 ± 0.7	1.8 ± 0.8	76.8 ± 1.1	2.7 ± 1.1
	-3.8	14.2 ± 0.2	5.5 ± 0.8	1.2 ± 0.8	79.9 ± 0.5	3.3 ± 0.6
	-3.85	15.5 ± 0.4	5.1 ± 0.9	0.9 ± 0.9	78.1 ± 1.7	3.1 ± 1.1
	-3.9	16.5 ± 1.0	4.7 ± 1.2	0.8 ± 0.8	75.3 ± 1.3	3.1 ± 1.2
	-4.0	20.7 ± 0.5	3.4 ± 0.9	0.5 ± 0.6	72.0 ± 0.9	2.3 ± 0.8
	-3.0	47.3 ± 2.5	35.4 ± 3.0	0	15.5 ± 2.0	0
Cu-NN	-3.0	34.0 ± 2.1	8.0 ± 1.6	0	50.6 ± 1.2	0
	-3.2	25.2 ± 1.4	9.5 ± 1.8	0.2 ± 1.4	62.2 ± 2.5	1.9 ± 1.1
	-3.4	15.4 ± 0.5	10.0 ± 0.4	0.2 ± 1.1	70.3 ± 1.9	2.3 ± 1.0
	-3.5	10.0 ± 1.2	8.5 ± 2.2	2.5 ± 0.8	77.5 ± 2.1	2.3 ± 2.0
	-3.55	8.3 ± 2.8	6.3 ± 1.1	2.3 ± 0.9	83.2 ± 2.4	2.5 ± 1.0
	-3.6	12.3 ± 2.3	5.6 ± 3.0	1.4 ± 0.8	80.0 ± 0.8	2.5 ± 2.0
	-3.65	15.8 ± 3.1	5.4 ± 2.0	1.2 ± 1.0	76.6 ± 0.6	2.6 ± 1.0
	-3.7	19.2 ± 1.2	4.9 ± 2.0	1.3 ± 0.9	71.1 ± 1.8	4.0 ± 1.0
	-3.75	22.1 ± 3.2	4.8 ± 1.1	1.3 ± 1.1	64.1 ± 2.4	4.5 ± 0.8
	-3.8	26.4 ± 4.1	4.4 ± 2.0	1.1 ± 0.9	60.2 ± 1.3	4.4 ± 0.9
	-3.85	30.2 ± 3.3	4.4 ± 3.1	0.9 ± 1.1	55.9 ± 1.6	4.8 ± 1.0
	-3.9	34.8 ± 2.4	4.0 ± 1.2	0.8 ± 1.0	53.0 ± 2.4	3.9 ± 1.1
	-4.0	38.4 ± 3.1	3.9 ± 0.9	0.7 ± 1.3	52.3 ± 1.1	3.6 ± 0.8
$\mathrm{Cu}-\mathrm{Br}$	-3.0	48.5 ± 3.7	25.0 ± 0.5	0	21.9 ± 0.5	0
	-3.2	43.9 ± 4.7	27.7 ± 1.0	0	25.9 ± 1.0	0
	-3.4	38.2 ± 7.5	23.1 ± 2.5	0.7 ± 0.9	36.3 ± 1.7	0.7 ± 0.4
	-3.5	34.2 ± 5.3	20.6 ± 3.2	1.5 ± 0.9	42.5 ± 2.2	2.0 ± 0.7

	-3.55	31.5 ± 4.2	15.9 ± 4.0	2.4 ± 1.2	47.0 ± 2.8	2.9 ± 1.2
	-3.6	29.2 ± 2.0	13.4 ± 5.1	3.4 ± 1.1	51.1 ± 3.9	3.5 ± 1.3
	-3.65	26.7 ± 6.4	9.7 ± 6.3	2.3 ± 0.9	57.0 ± 2.1	5.1 ± 1.5
	-3.7	25.8 ± 5.4	7.0 ± 2.9	1.9 ± 0.7	61.7 ± 1.6	6.0 ± 2.6
	-3.75	34.7 ± 5.3	5.9 ± 5.3	1.5 ± 0.6	55.1 ± 4.9	5.5 ± 2.0
	-3.8	42.0 ± 4.1	4.2 ± 2.9	1.2 ± 0.9	48.5 ± 5.9	5.2 ± 2.2
	-3.85	48.9 ± 3.1	2.9 ± 7.9	1.1 ± 0.8	44.5 ± 5.4	4.1 ± 1.1
	-3.9	50.5 ± 3.1	2.6 ± 5.2	0.9 ± 0.7	41.7 ± 5.5	3.1 ± 2.1
	-4.0	56.6 ± 2.1	2.6 ± 3.5	0.8 ± 1.0	37.1 ± 2.8	2.8 ± 1.9
$\mathrm{Cu}-\mathrm{NO} 2$	-3.0	48.9 ± 1.2	9.8 ± 1.1	0	35.9 ± 0.9	0
	-3.2	47.3 ± 1.3	12.5 ± 0.4	0	37.2 ± 1.1	0
	-3.4	44.6 ± 1.2	12.6 ± 0.6	0.7 ± 0.3	39.3 ± 1.1	0
	-3.5	43.2 ± 0.8	14.4 ± 0.3	1.2 ± 0.2	43.4 ± 0.8	0.8 ± 0.5
	-3.55	37.4 ± 0.5	10.9 ± 0.6	1.7 ± 0.2	45.9 ± 0.6	1.4 ± 0.4
	-3.6	34.7 ± 0.5	9.7 ± 0.5	1.9 ± 0.0	49.2 ± 0.7	1.9 ± 0.4
	-3.65	33.5 ± 0.3	8.9 ± 0.1	2.9 ± 0.4	51.6 ± 0.5	3.2 ± 0.5
	-3.7	33.5 ± 0.4	7.8 ± 0.1	3.5 ± 0.4	53.5 ± 0.6	4.6 ± 0.4
	-3.75	28.6 ± 0.2	7.0 ± 0.5	2.3 ± 0.3	56.3 ± 0.4	5.6 ± 0.4
	-3.8	32.3 ± 0.4	6.0 ± 0.1	1.1 ± 0.2	57.9 ± 0.8	6.8 ± 0.3
	-3.85	38.9 ± 0.9	5.9 ± 0.2	1.1 ± 0.6	56.3 ± 1.2	4.8 ± 0.3
	-3.9	40.7 ± 0.7	5.4 ± 0.1	1.3 ± 0.1	53.6 ± 0.9	3.7 ± 0.3
	-4.0	45.7 ± 1.3	4.2 ± 0.3	0.7 ± 1.1	49.2 ± 1.4	2.0 ± 1.5
$\mathrm{Cu}-$ NN/ionomer	-3.0	66.9 ± 3.5	4.6 ± 0.2	0	23.7 ± 1.0	0
	-3.2	61.9 ± 2.5	5.1 ± 0.3	0	25.3 ± 0.6	0
	-3.4	51.7 ± 1.8	7.1 ± 0.2	1.0 ± 0.5	37.4 ± 1.1	0.6 ± 0.4
	-3.5	44.9 ± 3.1	7.1 ± 0.3	1.4 ± 0.5	43.9 ± 1.8	1.0 ± 0.5
	-3.55	40.9 ± 1.5	5.3 ± 0.1	1.5 ± 0.5	49.4 ± 0.8	1.0 ± 1.1
	-3.6	35.4 ± 1.0	4.8 ± 0.1	1.7 ± 0.4	56.1 ± 1.3	1.2 ± 0.6
	-3.65	28.1 ± 2.9	4.7 ± 0.2	2.0 ± 0.5	64.2 ± 1.8	1.7 ± 1.0
	-3.7	21.9 ± 0.6	4.2 ± 0.1	1.5 ± 0.4	73.6 ± 2.0	2.1 ± 0.5

-3.75	14.4 ± 1.5	4.2 ± 0.1	1.1 ± 0.5	75.5 ± 1.7	2.5 ± 1.1	
	-3.8	10.8 ± 1.1	3.6 ± 0.3	1.1 ± 0.4	86.3 ± 0.5	2.8 ± 1.5
	-3.85	7.2 ± 2.3	4.0 ± 0.1	1.1 ± 0.6	89.0 ± 2.9	2.3 ± 1.0
	-3.9	14.6 ± 3.4	3.2 ± 0.4	1.1 ± 0.4	79.5 ± 1.5	2.3 ± 0.9
	-4.0	23.2 ± 4.0	3.6 ± 1.3	0.6 ± 0.9	73.8 ± 2.1	1.7 ± 1.5

Supplementary Table 10. The comparison of energy efficiency (EE) and energy power consumption (EPC) on different diazonium salts functionalized copper catalysts and the literatures benchmarks in single MEA electrolyzer.

Samples	$\begin{gathered} \mathbf{j} \mathbf{C} 2 \mathrm{H} 4 \\ (\mathrm{~mA} \\ \mathbf{c m}^{-} \\ { }^{\mathbf{2}}{ }^{2} \\ \hline \end{gathered}$	$\mathbf{E}_{\text {cell }}$ (V)	$\begin{gathered} \mathrm{FE}_{\mathrm{C} 2 \mathrm{H} 4} \\ (\%) \end{gathered}$	$\begin{gathered} \mathbf{E E}_{\text {C2H4 }} \\ (\%) \end{gathered}$	$\begin{gathered} \text { EPC } \\ \left(\mathrm{kWh} / \mathbf{N m}^{3}\right) \end{gathered}$	Notes
Cu-NN/ionomer	536	3.85	89	27.0	62.9	
$\mathrm{Cu}-\mathrm{NN}$	212	3.55	83	26.9	61.4	
$\mathrm{Cu}-\mathrm{NO}_{2}$	198	3.80	58	17.5	94.2	
$\mathrm{Cu}-\mathrm{NNN}$	229	3.80	75	22.7	72.7	Our work
$\mathrm{Cu}-\mathrm{N}$	271	3.80	80	24.2	68.2	
$\mathrm{Cu}-\mathrm{OCH}_{3}$	250	3.65	78	23.6	69.9	
$\mathrm{Cu}-\mathrm{Br}$	170	3.70	62	19.1	86.1	
$\mathrm{Cu}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	126	3.65	73	23.0	71.8	
Cu-12	76.8	3.6	64	20.2	81.8	Ref ${ }^{[6]}$
$\mathrm{Cu} /$ tetrahydrophenanthrolinium/ CTPI	208	3.8	67	20.2	81.4	$\operatorname{Ref}{ }^{[7]}$
Cu-CIPH	210	3.9	54	16.0	103.6	Ref ${ }^{[8]}$
$\mathrm{Cu}-\mathrm{SiOx}$	215	4.1	65	18.2	90.5	Ref ${ }^{[9]}$
$\mathrm{Cu}-\mathrm{KOH}$	153	3.25	55	19.4	84.8	$\operatorname{Ref}{ }^{[10]}$
$\mathrm{Cu}-\mathrm{CO}_{2} \mathbf{- 6 0}$	217	3.7	62	19.3	85.6	Ref ${ }^{[11]}$

Supplementary Table 11. Summary of the calculated electrochemically active surface area (ECSA) for Cu and $\mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer catalysts.

Sample	ECSA (cm $\mathbf{c m}^{\mathbf{2}}$	Surface coverage (\%)
Cu	14.4	\backslash
$\mathrm{Cu}-\mathrm{NN}$	11.7	18.5%

$\mathrm{Cu}-\mathrm{NN} /$ ionomer	10.2	29.2%

Supplementary Table 12. Summary of the calculated electrochemically active surface area (ECSA) for $\mathrm{Cu}(111)$ and $\mathrm{Cu}(100)$ single crystals and $\mathrm{Cu}(111)-\mathrm{NN}$ and $\mathrm{Cu}(100)-\mathrm{NN}$ single crystals catalysts.

Sample	ECSA (Cu, cm2)	Surface coverage (\%)
$\mathrm{Cu}(111)$	1.20	\backslash
$\mathrm{Cu}(100)$	1.27	\backslash
$\mathrm{Cu}(111)-\mathrm{NN}$	0.95	20.6%
$\mathrm{Cu}(100)-\mathrm{NN}$	0.99	21.8%

Supplementary Table 13. Surface composition. Extracted from the integrated areas of the fits of the Cu-LMM AES data (Figure 3a) with the corresponding reference spectra.

Electrode	$\mathbf{C u}(\mathbf{a t .} \%)$	$\mathbf{C u}_{\mathbf{2}} \mathbf{O}(\mathbf{a t .} \%)$	Average oxidation state
Cu	100	0	0
$\mathrm{Cu}-\mathrm{N}_{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}}$	86.5	13.5	+0.135
$\mathrm{Cu}-\mathrm{OCH}_{3}$	80.7	19.3	+0.193
$\mathrm{Cu}-\mathrm{N}$	77	23.0	+0.23
$\mathrm{Cu}-\mathrm{NN}$	73.8	26.2	+0.262
$\mathrm{Cu}-\mathrm{NNN}$	49	51.0	+0.51
$\mathrm{Cu}-\mathrm{Br}$	34.9	65.1	+0.651
$\mathrm{Cu}-\mathrm{NO}_{2}$	25.3	74.7	+0.747

Supplementary Table 14. Summary of the XANES data. E0 and corresponding oxidation states (δ) of Cu-X catalysts (X refers to $\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups).

Electrode	Pristine $(\mathbf{C u})$	$\mathbf{C u}-\mathbf{N}_{\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}}\right)_{\mathbf{2}}}$	$\mathbf{C u}^{\mathbf{- O C H}} \mathbf{3}$	$\mathbf{C u}-\mathbf{N}$	$\mathbf{C u}-\mathbf{N N}$	$\mathbf{C u}-\mathbf{N N N}$	$\mathbf{C u}-\mathbf{B r}$	$\mathbf{C u}-\mathbf{N O}_{\mathbf{2}}$
$\mathbf{E}_{\mathbf{0}}$	8979.11	8979.20	8979.28	8979.32	8979.4	8979.77	8979.99	8980.13
$\boldsymbol{\delta}$	+0.067	+0.134	+0.188	+0.214	+0.268	+0.516	+0.663	+0.757

Supplementary Table 15. Summary of the XANES data. E0 and corresponding oxidation states (δ) of $\mathrm{Cu}-\mathrm{NN}$ under different potentials.

Potentials	OCV	$\mathbf{- 0 . 9 3}$ (V vs. RHE)	$\mathbf{- 0 . 8 8}$ (V vs. RHE)	$\mathbf{- 0 . 8 3}$ (V vs. RHE)
E_{0}	8979.4	8979.37	8979.34	8979.28
δ	+0.27	+0.25	+0.23	+0.19

Supplementary Table 16. Structure parameters (N^{a} : coordination numbers; $R(\AA)^{b}$: bond distance; $\sigma^{2}\left(\AA^{2}\right)^{c}$: Debye-Waller factors; $\Delta E_{0}(\mathrm{eV})^{d}$: the inner potential correction. R factor: goodness of fit.), obtained in fitting of experimental Cu K -edge EXAFS data for ex-situ samples $\left(S_{0}{ }^{2}=0.94\right)$. Uncertainties of the last digit are given in parentheses.

Sample	Shell	N^{a}	$\boldsymbol{R}(\AA)^{\text {b }}$	$\sigma^{2}\left(\AA^{2}\right)^{c}$	$\Delta E_{0}(\mathrm{eV})^{\text {d }}$	\boldsymbol{R} factor
Cu foil	$\mathrm{Cu}-\mathrm{Cu}$	12.0	2.54(2)	0.0091(2)	3.4(1)	0.0003
$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}-\mathrm{O}$	2.0(2)	1.84(9)	0.002(1)	2.0(1)	0.008
$\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$\mathrm{Cu}-\mathrm{O}$	0.2(1)	1.86(3)	0.001(7)	1.6(7)	0.002
	$\mathrm{Cu}-\mathrm{Cu}$	6.6(9)	2.54(4)	0.008(7)		
OCH_{3}	$\mathrm{Cu}-\mathrm{O}$	0.3(2)	1.86(2)	0.001(4)	2.0(5)	0.003
	$\mathrm{Cu}-\mathrm{Cu}$	6.4(3)	2.54(1)	0.008(3)		
N	$\mathrm{Cu}-\mathrm{O}$	0.3(2)	1.86(2)	0.001(4)	2.6(8)	0.003
	$\mathrm{Cu}-\mathrm{Cu}$	6.0(1)	2.54(2)	0.008(5)		
NN	$\mathrm{Cu}-\mathrm{O}$	0.5(2)	1.86(1)	0.001(3)	3.2(8)	0.003
	$\mathrm{Cu}-\mathrm{Cu}$	5.7(9)	2.55(1)	0.008(3)		
NNN	$\mathrm{Cu}-\mathrm{O}$	1.2(4)	1.86(1)	0.001(3)	$3.3(7)$	0.004
	$\mathrm{Cu}-\mathrm{Cu}$	5.1(6)	2.54(1)	0.008(4)		
Br	$\mathrm{Cu}-\mathrm{O}$	1.5(3)	1.86(2)	0.001(4)	3.2(6)	0.004
	$\mathrm{Cu}-\mathrm{Cu}$	5.1(7)	2.53(3)	0.008(1)		
NO_{2}	$\mathrm{Cu}-\mathrm{O}$	1.9(4)	1.86(3)	0.001(3)	3.2(5XANE)	0.004
	$\mathrm{Cu}-\mathrm{Cu}$	4.8(7)	2.50(2)	0.008(1)		
Pristine	$\mathrm{Cu}-\mathrm{Cu}$	8.8(3)	2.54(2)	$0.0085(3)$	2.4(3)	0.0004

Supplementary Table 17. The ratio between the intensities of bands for HFB-CO* and LFB-CO* on Cu-X catalysts (X refers to $\mathrm{NO}_{2}, \mathrm{Br}, \mathrm{NNN}, \mathrm{NN}, \mathrm{N}, \mathrm{OCH}_{3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ functional groups). Two independent sets of samples were measured, and the average values were used for figure plotting and data analysis.

Electrode	Ratio (H/L)		
Cu	Tray 1	Tray 2	average
$\mathrm{Cu}-{\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}}^{\mathrm{Cu}-\mathrm{OCH}_{3}}$	0.92	0.89	0.91
$\mathrm{Cu}-\mathrm{N}$	1.04	1.02	1.03
$\mathrm{Cu}-\mathrm{NN}$	1.20	1.24	1.22
$\mathrm{Cu}-\mathrm{NNN}$	1.23	1.25	1.24
$\mathrm{Cu}-\mathrm{Br}$	1.44	1.46	1.45
$\mathrm{Cu}-\mathrm{NO}_{2}$	1.58	1.54	1.56

Supplementary Table18. Summary of the estimated FEs for Ag electrode measured at different applied potentials in the MEA reactor. The standard deviation of the measurements was estimated from three independent samples.

Cell Voltages (V)	Faradaic efficiency (\%)	
	$\mathbf{C O}$	$\mathbf{H}_{\mathbf{2}}$
-3.0	74.4 ± 1.4	25.3 ± 1.1
-3.1	78.1 ± 0.6	22.2 ± 1.0
-3.2	81.8 ± 1.1	18.8 ± 1.0
-3.3	84.0 ± 1.8	15.6 ± 1.7
-3.35	86.9 ± 1.3	13.1 ± 2.4
-3.40	88.4 ± 2.0	11.1 ± 2.1
-3.45	91.2 ± 1.0	9.6 ± 1.8
-3.5	93.2 ± 1.5	7.6 ± 1.9
-3.55	94.9 ± 0.8	5.7 ± 1.4
-3.6	93.4 ± 1.4	7.6 ± 1.2
-3.65	90.7 ± 1.4	10.3 ± 1.3
-3.7	88.4 ± 1.1	13.3 ± 1.2
-3.75	85.6 ± 1.6	15.3 ± 1.7
-3.8	83.8 ± 2.4	17.1 ± 1.6

Supplementary Table 19. Summary of the estimated FEs for $\mathrm{Cu}-\mathrm{X}$ electrodes measured at different applied potentials in the cascade MEA system with IrOx supported on Ti mesh as the anode (X refers to NN and NN /ionomer functional groups). The standard deviation of the measurements was estimated from three independent samples.

Electrodes	voltages (V)	Faradaic efficiency (\%)				
		H_{2}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathbf{C H}_{3} \mathbf{C O O H}$	n-Propanol
Cu	-2.0	83.1 ± 2.9	12.4 ± 1.6	0.5 ± 0.7	0.4 ± 1.0	0.2 ± 0.8
	-2.1	73.0 ± 3.5	21.6 ± 2.6	1.4 ± 0.9	0.5 ± 1.3	0.9 ± 0.5
	-2.2	65.4 ± 3.0	27.9 ± 2.3	1.6 ± 0.5	0.7 ± 0.9	0.9 ± 0.7
	-2.3	49.5 ± 4.9	37.4 ± 3.0	1.7 ± 1.1	0.8 ± 1.0	0.9 ± 0.8
	-2.4	45.3 ± 1.3	47.2 ± 1.5	2.4 ± 1.5	1.2 ± 1.2	1.1 ± 0.5
	-2.5	37.7 ± 2.0	54.9 ± 3.5	2.4 ± 1.3	1.2 ± 1.7	0.9 ± 1.5
	-2.6	31.4 ± 2.9	63.2 ± 5.1	2.8 ± 0.5	1.3 ± 0.9	0.9 ± 1.0
	-2.7	28.1 ± 1.5	67.4 ± 2.9	2.5 ± 2.1	1.0 ± 1.4	0.9 ± 2.1
	-2.8	30.1 ± 4.8	64.7 ± 2.4	2.2 ± 1.9	0.9 ± 0.5	0.9 ± 0.5
	-2.9	34.9 ± 3.6	58.4 ± 1.7	1.2 ± 0.6	0.8 ± 0.5	0.8 ± 1.0
Cu-NN	-2.0	60.7 ± 3.0	35.4 ± 2.3	1.4 ± 1.2	2.0 00.4	1.8 ± 0.7
	-2.1	42.5 ± 1.9	50.7 ± 1.9	1.8 ± 2.5	1.9 ± 0.3	1.9 ± 0.6
	-2.2	30.2 ± 0.8	65.5 ± 1.0	1.4 ± 1.8	1.5 ± 0.6	1.6 ± 0.4
	-2.3	22.4 ± 1.9	75.9 ± 1.9	1.1 ± 1.5	1.1 ± 0.7	1.5 ± 0.9
	-2.4	19.5 ± 0.1	81.9 ± 0.4	1.0 ± 0.8	0.9 ± 0.7	1.6 ± 0.6
	-2.5	15.4 ± 0.4	86.0 ± 0.6	1.1 ± 0.6	0.8 ± 0.3	1.4 ± 0.2
	-2.6	20.2 ± 0.1	82.2 ± 0.6	1.1 ± 1.4	0.9 ± 0.6	1.4 ± 0.4
	-2.7	24.1 ± 0.3	76.8 ± 0.9	1.1 ± 0.9	0.7 ± 1.0	1.4 ± 0.4
	-2.8	28.7 ± 0.6	71.2 ± 1.3	1.0 ± 0.7	0.6 ± 0.5	1.3 ± 0.7
	-2.9	34.7 ± 0.5	66.3 ± 0.5	1.4 ± 0.7	0.6 ± 0.5	1.3 ± 0.5
$\mathrm{Cu}-$ NN/ionomer	-2.0	71.0 ± 2.9	16.9 ± 2.5	0.8土2.4	1.5 ± 1.3	1.2 ± 1.1
	-2.1	58.9 ± 1.3	28.3 ± 3.0	0.8 ± 2.0	1.5 ± 1.5	1.0 ± 1.5
	-2.2	50.2 ± 2.0	39.8 ± 1.5	0.6 ± 2.1	1.4 ± 2.5	0.9 ± 2.0
	-2.3	47.6 ± 2.4	46.9 ± 2.5	0.7 ± 1.0	1.3 ± 1.0	0.9 ± 1.5
	-2.4	42.4 ± 2.8	53.6 ± 3.5	0.7 ± 0.5	1.2 ± 0.5	1.0 ± 1.1
	-2.5	38.2 ± 1.9	59.2 ± 5.1	0.8 ± 1.5	1.1 ± 1.0	1.1 ± 0.7
	-2.6	32.8 ± 3.5	64.9 ± 4.0	0.8 ± 1.0	1.2 ± 1.2	1.0 ± 0.5
	-2.7	26.0 ± 2.5	72.1 ± 2.9	0.7 ± 0.7	1.2 ± 1.5	0.8 ± 0.8
	-2.8	28.5 ± 1.4	61.9 ± 1.4	0.6 ± 0.4	1.0 ± 0.7	0.6 ± 0.7
	-2.9	32.5 ± 3.0	55.6 ± 4.9	0.6 ± 1.4	0.9 ± 0.6	0.5 ± 1.0

Supplementary Table 20. Summary of the estimated FEs for $\mathrm{Cu}-\mathrm{X}$ electrodes measured at different applied potentials in the cascade MEA system with NiFe LDH as the anode (X refers to NN and $\mathrm{NN} /$ ionomer functional groups). The standard deviation of the measurements was estimated from three independent samples.

Electrodes	voltages (V)	Faradaic efficiency (\%)				
		H_{2}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathbf{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{3} \mathbf{C O O H}$	n-Propanol
Cu	-1.7	83.5 ± 1.7	7.1 ± 2.4	1.0 ± 0.6	2.2 ± 0.6	1.0 ± 0.2
	-1.8	82.2 ± 2.7	11.5 ± 1.2	1.7 ± 0.8	2.7 ± 0.6	1.4 ± 0.3
	-1.9	76.0 ± 2.9	20.4 ± 2.8	1.8 ± 0.7	2.7 ± 0.1	1.5 ± 0.8
	-2.0	69.8 ± 2.1	25.5 ± 3.4	1.0 ± 0.6	1.5 ± 1.3	1.1 ± 0.8
	-2.1	64.7 ± 3.2	30.4 ± 3.6	0.9 ± 0.8	1.1 ± 0.8	1.0 ± 1.0
	-2.2	54.4 ± 1.7	38.1 ± 2.6	0.9 ± 0.6	1.0 ± 0.3	0.9 ± 1.1
	-2.3	49.9 ± 1.0	46.4 ± 1.0	0.9 ± 0.6	1.1 ± 0.9	0.9 ± 0.6
	-2.4	39.9 ± 3.4	57.7 ± 3.3	0.9 ± 0.9	0.9 ± 1.3	0.9 ± 0.9
	-2.5	30.8 ± 5.6	64.5 ± 1.6	0.8 ± 0.6	0.8 ± 0.6	0.8 ± 0.2
	-2.6	39.3 ± 2.1	54.7 ± 3.9	1.1 ± 0.6	0.8 ± 0.6	0.8 ± 0.7
Cu-NN	-1.7	66.8 ± 2.9	21.9 ± 2.8	1.0 ± 0.7	2.2 ± 0.8	1.0 ± 0.4
	-1.8	53.1 ± 0.6	38.2 ± 2.7	1.7 ± 0.2	2.7 ± 0.5	1.4 ± 0.4
	-1.9	40.1 ± 2.1	54.5 ± 1.9	1.8 ± 0.5	2.7 ± 0.3	1.5 ± 0.6
	-2.0	33.7 ± 1.1	63.5 ± 3.5	1.0 ± 0.6	1.5 ± 0.5	1.1 ± 0.6
	-2.1	23.2 ± 1.4	72.8 ± 3.1	0.9 ± 0.5	1.1 ± 0.6	1.0 ± 0.1
	-2.2	20.1 ± 2.5	81.8 ± 2.7	0.9 ± 1.0	1.0 ± 1.0	0.9 ± 0.6
	-2.3	14.7 ± 2.9	86.1 ± 2.1	0.9 ± 1.5	1.1 ± 0.9	0.9 ± 0.4
	-2.4	23.3 ± 2.8	79.8 ± 2.7	0.9 ± 0.9	0.9 ± 0.6	0.9 ± 1.0
	-2.5	38.7 ± 3.1	67.2 ± 1.9	0.8 ± 0.3	0.8 ± 0.6	0.8 ± 1.0
	-2.6	53.9 ± 2.8	52.6 ± 3.0	1.1 ± 0.8	0.8 ± 0.3	0.8 ± 0.6
$\begin{aligned} & \mathrm{Cu}- \\ & \text { NN/ionomer } \end{aligned}$	-1.7	83.0 ± 3.0	8.8 ± 2.3	2.0 ± 0.9	1.8 ± 0.4	0.6 ± 0.9
	-1.8	75.9 ± 2.9	15.9 ± 1.0	2.3 ± 1.9	2.2 ± 0.6	0.8 ± 0.8
	-1.9	68.0 ± 1.8	23.8 ± 0.2	1.1 ± 1.4	2.5 ± 0.4	1.3 ± 0.8
	-2.0	60.5 ± 3.9	31.2 ± 1.8	0.9 ± 0.6	2.2 ± 0.6	1.3 ± 0.4
	-2.1	52.4 ± 3.1	38.7 ± 3.0	0.9 ± 0.6	1.5 ± 1.0	1.3 ± 0.4
	-2.2	46.0 ± 2.1	44.0 ± 4.1	1.0 ± 0.6	1.4 ± 0.4	1.4 ± 1.0
	-2.3	39.9 ± 2.2	53.3 ± 4.5	0.9 ± 0.8	1.2 ± 1.0	1.0 ± 0.4
	-2.4	33.4 ± 4.3	68.1 ± 3.2	0.8 ± 1.0	1.4 ± 1.3	0.9 ± 0.6
	-2.5	28.6 ± 1.6	72.1 ± 2.1	0.7 ± 1.0	1.2 ± 0.9	0.7 ± 0.6
	-2.6	35.7 ± 3.5	64.6 ± 2.9	0.7 ± 0.5	1.0 ± 1.2	0.6 ± 0.3

Supplementary Table 21. Comparison of the performance metrics of the cascade MEA systems based on bare $\mathrm{Cu}, \mathrm{Cu}-\mathrm{NN}$ and $\mathrm{Cu}-\mathrm{NN} /$ ionomer cathodes.

Electrodes	$\mathbf{j} \mathbf{C 2 H 4}$ $\left(\mathbf{m A ~ c m}^{-2}\right)$	$\mathbf{F E}_{\mathbf{C 2 H 4}} \mathbf{(\%)}$	$\mathbf{R}_{\mathbf{C 2 H} 4}$ $\mathbf{(\mu m o l ~ h}^{\mathbf{- 1}}$ $\left.\mathbf{c m}^{-\mathbf{2}}\right)$	Energy efficiency $(\mathbf{E E}, \mathbf{\%})$	Electricity power consumption $(\mathbf{E P C}$,
Bare Cu	122	64.5	571	27.36	37.08
$\mathbf{C u - N N}$	154	86	720	39.69	25.56
Cu- NN/ionomer	234	72	1094	30.53	33.20

Supplementary Table 22. Summary of the estimated conversion rate (\%) of CO_{2} to $\mathrm{C}_{2} \mathrm{H}_{4}$ in single MEA and cascade MEA systems on $\mathrm{Cu}-\mathrm{X}$ electrodes measured at different current density (X refers to NN and $\mathrm{NN} /$ ionomer functional groups). The standard deviation of the measurements was estimated from three independent samples.

	$\mathrm{j}_{\text {total }}\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$\begin{gathered} \mathrm{CO}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}(\%) \\ (\text { (Single MEA) } \end{gathered}$	$\mathrm{j}_{\text {total }}\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$\begin{gathered} \mathrm{CO}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}(\%) \\ \text { (Cascade MEA) } \\ \hline \end{gathered}$
Bare Cu	45.1	0.05248	5.4	0.05914
	70.8	0.4264	10.45	0.26140
	113	0.91512	28.5	0.96744
	153	1.60064	59.375	1.63969
	176	1.97456	80.475	2.49496
	202	2.43704	102.575	4.44169
	230	3.05368	145.8	6.01062
	249	3.40464	162.125	8.75611
	280	4.17872	189.75	9.79168
	304	4.66088	216	9.44685
	330	4.91672		
	361	5.002		
	389	4.65104		
Cu-NN	53.06667	1.02336	10.61333	0.2058
	92.76667	2.20088	26.36	0.679895
	158	4.22464	53.26667	1.4868
	214.66667	6.33805	84.23333	3.730125
	256.8	8.13549	111.68667	6.2601
	289.23333	8.80133	147.78667	9.66575
	328.26667	9.57104	187.04	12.27555
	369.13333	9.98651	217.18667	13.430025
	411.26667	10.03571	269.83333	14.45955
	450.86667	10.332	278.9	12.331725
	493.2	10.48944		
	530.03333	10.69827		
$\mathrm{Cu}-$ NN/ionomer	62.05669	0.75112	16.3	0.20700
	145.61473	1.5129	29.325	1.0007
	223.15493	3.18078	78.75	2.55168
	267.90518	4.47556	134.3	4.49133
	321.76597	6.05324	180.25	7.24739
	354.89948	7.57926	233.95	10.25059

	400.87544	9.79162	291.125	12.87568
	445.60173	12.49516	302.25	17.73350
	489.99115	14.08268	325.75	18.76907
	564.02061	18.59022	352.35	18.21300
	599.44034	20.6681		
	683.5718	20.7132		

Supplementary Table 23. Techno-economic assessment. Cost of ethylene produced from CO_{2} in different systems with different electrodes.

Single MEA system ($\mathrm{CO}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}$, neutral case)

Parameters	bare Cu	$\mathrm{Cu}-\mathrm{NN}$	$\mathrm{Cu}-\mathrm{NN} / \mathrm{ionomer}$
Output product	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{4}$
$\mathrm{CO}_{2} \operatorname{cost}$ (\$/tonne)	30	30	30
Cathode Input CO_{2} cost ($\$ /$ tonne $\left.\mathbf{C}_{2} \mathbf{H}_{4}\right)$	515.1	500.1	501.7
Product formation rate ($\mathrm{mol} / \mathrm{h} / \mathrm{cm}^{2}$)	$3.8 * 10^{-4}$	$6.6 * 10^{-4}$	$16.4 * 10^{-4}$
Cathode catalyst	Cu	$\mathrm{Cu}-\mathrm{NN}$	$\mathrm{Cu}-\mathrm{NN} /$ ionomer
Cathode catalyst lifetime (year)	1	1	1
Cathode catalyst (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	932.87	1407.1	762.8
Membrane (AEM, X-37) (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	3854.6	2218.9	893.6
Anode catalyst	IrOx-Ti mesh	IrOx-Ti mesh	IrOx-Ti mesh
Anode Catalyst (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	4066.7	2342	942.98
Anolyte Molarity(mol/L)	$0.5 \mathrm{M} \mathrm{KHCO}_{3}$	$0.5 \mathrm{M} \mathrm{KHCO}_{3}$	$0.5 \mathrm{M} \mathrm{KHCO}_{3}$
Anolyte lifetime (year)	1	1	1
Cost of Anolyte (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	4.56	2.63	1.06
Electric power consumption ($\mathrm{kWh} /$ tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	109120	48990	50100
Electric power consumption (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	3273.6	1469.7	1503
Cell Voltage(V)	3.8	3.55	3.85
Faradaic efficiency ($\mathrm{C}_{2} \mathrm{H}_{4}, \%$)	40	83	89
Total Current density ($\mathrm{mA} / \mathrm{cm}^{2}$)	304	256	602
Single pass conversion (\%)	5.996	10.188	25.205
System lifetime (year)	10	10	10
Ethanolamine $\text { (\$/tonne } \left.\mathbf{C}_{2} \mathbf{H}_{4}\right)$	N/A	N/A	N/A
total cost (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	12647.43	7940.33	4620.08

N / A. indicates that the item is not applicable.

Cascade MEA system ($\mathrm{CO}_{2}-\mathrm{CO}, \mathrm{CO}_{-} \mathrm{C}_{2} \mathrm{H}_{4}$, base case)

	Cu system		Cu-NN system		Cu-NN/ionomer system	
Parameters	$\begin{gathered} \mathrm{Ag} \\ \left(\mathrm{CO}_{2}-\mathrm{CO}\right) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \left(\mathrm{CO}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \left(\mathrm{CO}_{2}-\mathrm{CO}\right) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \left(\mathrm{CO}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \left(\mathrm{CO}_{2}-\mathrm{CO}\right) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \left(\mathrm{CO}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$
Output product	CO	$\mathrm{C}_{2} \mathrm{H}_{4}$	CO	$\mathrm{C}_{2} \mathrm{H}_{4}$	CO	$\mathrm{C}_{2} \mathrm{H}_{4}$
CO_{2} cost (\$/tonne)	30	N/A	30	N/A	30	N/A
Cathode Input $\mathbf{C O}_{2}$ cost (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	983.68	N/A	802.13	N/A	938.76	N/A
Product formation rate ($\mathrm{mol} / \mathrm{h} / \mathrm{cm}^{2}$)	$26.7 * 10^{-4}$	$5.7 * 10^{-4}$	$\frac{26.7}{4} \text { * } 10$	$7.2 * 10^{-4}$	$26.7 * 10^{-4}$	$10.9 * 10^{-4}$

Cathode catalyst		Cu		$\mathrm{Cu}-\mathrm{NN}$		$\mathrm{Cu}-$ NN/ionomer
Cathode catalyst	1	1	1	1	1	1
lifetime (year)						
$\begin{aligned} & \text { Cathode catalyst } \\ & \left(\$ / \text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}\right) \end{aligned}$	580.5	580	479	1254.2	317.9	1120.5
Membrane (AEM, X-37) (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	2396.6	2396.6	1978	1978	1312.5	1312.5
Anode catalyst	$\underset{\text { mesh }}{\text { NiFe LDH-Ti }}$	NiFe LDHTi mesh	NiFe LDH-Ti mesh	$\begin{aligned} & \text { NiFe LDH-Ti } \\ & \text { mesh } \end{aligned}$	NiFe LDH Ti mesh	$\underset{\text { mesh }}{\text { NiFe LDH-Ti }}$
$\begin{aligned} & \text { Anode Catalyst } \\ & \left(\$ / \text { tonne } \mathbf{C}_{2} \mathbf{H}_{4}\right) \end{aligned}$	216.9	216.9	179	179	118.8	118.8
Anolyte Molarity(mol/L)	0.1 M KHCO 3	1M KOH	$0.1 \mathrm{M}$ KHCO_{3}	1M KOH	$0.1 \mathrm{M}$ KHCO_{3}	1 M KOH
Anolyte (year) lifetime	1	1	1	1	1	1
Cost of Anolyte (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	0.57	4.49	0.46	3.71	0.31	2.46
Electric power consumption (kWh/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	38311	29826	31616.2	19901.5	20981	26625.8
Electric power consumption $\left(\$ /\right.$ tonne $\left.\mathrm{C}_{2} \mathbf{H}_{4}\right)$	1149.3	895	948.45	597	629.43	798.7
Electrolyser cost(\$/kw)	300	300	300	300	300	300
$\begin{aligned} & \text { Electrolyser } \\ & \left(\$ / \text { tonne } \mathrm{C}_{2} \mathrm{H}_{4}\right) \end{aligned} \quad \text { cost }$	1130	659	932.5	584.5	618	657
Cell Voltage(V)	3.8	2.5	3.8	2.3	3.8	2.5
Faradaic efficiency $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \%\right)$	84	64	84	86	84	72
$\begin{aligned} & \text { Total Current } \\ & \text { density }\left(\mathrm{mA} / \mathrm{cm}^{2}\right) \end{aligned}$	173	189	173	179	173	325
$\begin{aligned} & \text { Cascade pass } \\ & \text { conversion (\%) } \end{aligned}$	N/A	7.7	N/A	9.8	N/A	14.8
$\begin{aligned} & \begin{array}{l} \text { System } \\ \text { (year) } \end{array} \quad \text { lifetime } \end{aligned}$	10	10	10	10	10	10
Ethanolamine (\$/tonne $\mathrm{C}_{2} \mathrm{H}_{4}$)	N/A	3.33	N/A	2.75	N/A	1.82
${ }_{\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)}^{\text {total }}$ cost ($\$ /$ tonne $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)$	9423.87		8401.7		6672.48	

N / A. indicates that the item is not applicable.

4.8.1 References

1. Hurley B L, McCreery R L. Covalent bonding of organic molecules to Cu and Al alloy $2024 \mathrm{~T}_{3}$ surfaces via diazonium ion reduction[J]. Journal of The Electrochemical Society, 2004, 151(5): B252.
2. Doppelt P, Hallais G, Pinson J, et al. Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts[J]. Chemistry of Materials, 2007, 19(18): 45704575.
3. Menanteau T, Dias M, Levillain E, et al. Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism[J]. The Journal of Physical Chemistry C, 2016, 120(8): 4423-4429.
4. Cai J, Wang S, Zhang J, et al. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism[J]. Applied Surface Science, 2018, 436: 950-956.
5. Mooste M, Kibena-Põldsepp E, Marandi M, et al. Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method[J]. Journal of Electroanalytical Chemistry, 2018, 817: 89-100.
6. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO_{2}-to-ethylene conversion[J]. Nature, 2020, 577(7791): 509-513.
7. Ozden A, Li F, García de Arquer F P, et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer[J]. ACS Energy Letters, 2020, 5(9): 2811-2818.
8. García de Arquer F P, Dinh C T, Ozden A, et al. CO_{2} electrolysis to multicarbon products at activities greater than $1 \mathrm{~A} \mathrm{~cm}^{-2}[J]$. Science, 2020, 367(6478): 661-666.
9. Li J, Ozden A, Wan M, et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis[J]. Nature communications, 2021, 12(1): 1-10.
10. Lee W H, Lim C, Lee S Y, et al. Highly selective and stackable electrode design for gaseous CO_{2} electroreduction to ethylene in a zero-gap configuration[J]. Nano Energy, 2021, 84: 105859.
11. Wang, Y., Wang, Z., Dinh, CT. et al. Catalyst synthesis under CO_{2} electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal 3, 98-106 (2020).

Chapter 5. Summary and Perspectives

5.1 Summary

Although considerable progress has been made in meeting industrial requirements in terms of Faradaic efficiency (FE) and formation rate, the selectivity towards the formation of a single type of multi-carbon ($\mathrm{C}_{2}+$) product has not been demonstrated to date. Moreover, numerous investigations have reported that partially oxidized copper $\left(\mathrm{Cu}^{\delta+}, 0<\delta<1\right)$ sites on the surface of copper catalysts can facilitate the conversion of CO_{2} to multi-carbons by decreasing the energy barrier associated with the CO dimerization. Nevertheless, the instability of $\mathrm{Cu}^{\delta+}$ species, especially the high cathodic potentials to electro-synthesize multi-carbons, made the study of the role of $\mathrm{Cu}^{\delta+}$ tedious, and it may eventually lead to a rapid loss of the performance. Therefore, my PhD work have aimed to explore an effective method to control $\mathrm{Cu}^{\delta+}$ species on the surface of copper-based electrodes and to investigate the relationship between multi-carbon selectivity and the surface oxidation state of copper modified with electronwithdrawing molecules. By combining density functional theory (DFT) calculations with operando Raman and X-ray absorption spectroscopy (XAS), we identified that the grafting of electron-withdrawing functional groups can efficiently dope the surface of Cu leading to the formation of $\mathrm{Cu}^{\delta+}(0<\delta<1)$ species. Compared to pristine nonfunctionalized electrodes, the modified electrodes display a clear improvement of the reaction rates and Faradaic efficiency towards the production of C_{2+} products.

The thesis is organized into five chapters. In the first chapter, we reviewed the fundamentals of CO_{2} electrochemical reduction reaction, the methods and parameters of performance evaluation; and the current state of electrochemical CO_{2} reduction reaction. The second chapter summarized the reported methods from literatures to suppress the main side reaction (hydrogen evolution reaction, HER) in CO_{2} reduction reaction $\left(\mathrm{CO}_{2} \mathrm{RR}\right)$ and N_{2} reduction reaction (NRR). This work was carried out during the first lockdown because of Covid in 2020 and allowed me to get more familiar with the field of $\mathrm{CO}_{2} \mathrm{RR}$. In the third chapter, I presented a strategy to functionalize bimetallic $\mathrm{Ag}-\mathrm{Cu}$ catalysts with thiadiazole and triazole derivatives. We found that the strong electron withdrawing groups based on aromatic heterocycles can effectively orient the pathway of the $\mathrm{CO}_{2} \mathrm{RR}$ reactions towards the synthesis of C_{2+} molecules. This proof of concept was further extended and optimized by the use of aryl diazonium salts (Chapter 4). We identified a library of electron-withdrawing aryl diazonium salts to functionalize Cu catalysts. The functionalized electrodes were fabricated and investigated to elucidate the influence of Cu valence on the high selectivity of ethylene during the $\mathrm{CO}_{2} \mathrm{RR}$. In parallel of these thrusts in the design of Cu catalysts, we successfully integrated our catalysts into flow electrolyzer.

5.2 Perspectives

Despite these successes for converting CO_{2} to multi-carbon products, the presented results still require additional efforts to meet high products selectivity, high energy efficiency and competitive current density. I list below some of the important challenges in the field:
(1) In this thesis, high selectivity, high current density and high energy efficiency were obtained by assembling our electrodes and anion exchange membranes (AEM) in a membrane-electrode-assembly (MEA) electrolyzer, which is considered to be an electrolysis system close to the industry applications. However, classic challenges such as both salt precipitation and water flooding at the back side of gas diffusion layer in AEM assembled MEA electrolyzers still exist. This lowers the selectivity of specific products during the long-term stability and hinders the development of MEA electrolyzer towards industry. Therefore, seeking for an effective method to mitigate or solve this problem has become one of the most important tasks. Replacing AEM by bipolar membrane (BPM) has been considered as a promising method, as the BPM works by dissociating water at the sandwiched cation and anion membrane interfaces when anion and cation exchange layer face to anode and cathode respectively, which suppress the crossing of OH^{-}and react with CO_{2} to form carbonate in the CO_{2} gas channel. Nevertheless, the BPM assembled MEA usually shows the unsatisfying performance due to the serious HER at the cathode and high internal resistance. Therefore, it will be important to design novel BPM membranes with tailored functional groups and assembling them into a MEA. In this context, we note that more attention has recently been given to the use of BPM membranes for $\mathrm{CO}_{2} \mathrm{RR}$, which therefore involves interdisciplinary research between polymer science, electrochemistry and chemical engineering.
(2) Currently, CO_{2} electroreduction to single carbon products $(\mathrm{CO}$ and HCOOH$)$ has almost achieved industrial targets in terms of activity and conversion rate with excellent stability. However, the energy efficiency, the single-pass conversion rate and current density of the electrochemical CO_{2} reduction to $\mathrm{C}_{2}+$ products are still too low to make the technology economically viable and competitive with traditional process based on fossil fuels. This is attributed to losses at kinetic (ohmic loss, internal resistance, charge transfer resistance) and thermodynamic levels (overpotentials).
(3) The formation of multicarbon products still requires large overpotentials due to the high energy required for the dimerization of the $* \mathrm{CO} / * \mathrm{CHO}$ intermediates. Besides there is currently no catalyst that can optimize the binding of the different reaction intermediates leading to mediocre energy efficiency and poor selectivity.
(4) Encouraged by the recent advances in CO electroreduction, coupling electrochemical CO_{2} with the CO reduction reaction can be an effective method to shorten the gap between experiment and industry towards multicarbons production, while lower cathodic potential. Compared to $\mathrm{CO}_{2} \mathrm{RR}$, the electrochemical CO reduction to C_{2+} products involve less protons coupled electrons transfer process, which makes it easier to get multi-carbons with high selectivity. Moreover, the carbonate-free in CO electroreduction reaction makes it another big advantage. Efforts must therefore be devoted to achieve high selectivity and high energy efficiency towards multicarbons through cascade reactions.

Recently, many researches paid much attention on the study of copper-based catalysts, since copper is the only one transmit metal can produce multi-carbon products so far in electrochemical CO_{2} reduction reaction. Several important contributions have recently led to the identification of other transition metal as alternatives, dopant or as co-catalyst and call for additional investigations. It is necessary to develop advanced catalysts by using novel methodologies combining experiments, ex-situ and operando characterizations and first principal calculations.

